DePrince A Eugene, Mazziotti David A
Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA.
J Chem Phys. 2007 Sep 14;127(10):104104. doi: 10.1063/1.2768354.
Differing perspectives on the accuracy of three-electron reduced-density-matrix (3-RDM) reconstruction in nonminimal basis sets exist in the literature. This paper demonstrates the accuracy of cumulant-based reconstructions, developed by Valdemoro (V) [F. Colmenero et al., Phys. Rev. A 47, 971 (1993)], Nakatsuji and Yasuda (NY) [Phys. Rev. Lett. 76, 1039 (1996)], Mazziotti (M) [Phys. Rev. A 60, 3618 (1999)], and Valdemoro-Tel-Perez-Romero (VTP) [Many-electron Densities and Density Matrices, edited by J. Cioslowski (Kluwer, Boston, 2000)]. Computationally, we extend previous investigations to study a variety of molecules, including LiH, HF, NH(3), H(2)O, and N(2), in Slater-type, double-zeta, and polarized double-zeta basis sets at both equilibrium and nonequilibrium geometries. The reconstructed 3-RDMs, compared with 3-RDMs from full configuration interaction, demonstrate in nonminimal basis sets the accuracy of the first-order expansion (V) as well as the important role of the second-order corrections (NY, M, and VTP). Calculations at nonequilibrium geometries further show that cumulant functionals can reconstruct the 3-RDM from a multireferenced 2-RDM with reasonable accuracy, which is relevant to recent multireferenced formulations of the anti-Hermitian contracted Schrodinger equation (ACSE) and canonical diagonalization. Theoretically, we perform a detailed perturbative analysis of the M functional to identify its second-order components. With these second-order components we connect the M, NY, and VTP reconstructions for the first time by deriving both the NY and VTP functionals from the M functional. Finally, these 3-RDM reconstructions are employed within the ACSE [D. Mazziotti, Phys. Rev. Lett. 97, 143002 (2006)] to compute ground-state energies which are compared with the energies from the contracted Schrodinger equation and several wave function methods.
文献中存在关于非最小基组中三电子约化密度矩阵(3-RDM)重构准确性的不同观点。本文展示了由瓦尔德莫罗(V)[F. 科尔梅内罗等人,《物理评论A》47, 971 (1993)]、中津次和安田(NY)[《物理评论快报》76, 1039 (1996)]、马佐蒂(M)[《物理评论A》60, 3618 (1999)]以及瓦尔德莫罗 - 特尔 - 佩雷斯 - 罗梅罗(VTP)[《多电子密度与密度矩阵》,J. 乔斯洛斯基编辑(克鲁维尔出版社,波士顿,2000年)]所开发的基于累积量的重构方法的准确性。在计算方面,我们扩展了先前的研究,以研究多种分子,包括LiH、HF、NH₃、H₂O和N₂,在斯莱特型、双ζ和极化双ζ基组下的平衡和非平衡几何构型。将重构的3-RDM与全组态相互作用得到的3-RDM进行比较,结果表明在非最小基组中一阶展开(V)的准确性以及二阶修正(NY、M和VTP)的重要作用。在非平衡几何构型下的计算进一步表明,累积量泛函可以从多参考的2-RDM以合理的精度重构3-RDM,这与反厄米收缩薛定谔方程(ACSE)和规范对角化的近期多参考公式相关。在理论上,我们对M泛函进行了详细的微扰分析以确定其二阶分量。利用这些二阶分量,我们首次通过从M泛函推导NY和VTP泛函将M、NY和VTP重构联系起来。最后,在ACSE [D. 马佐蒂,《物理评论快报》97, 143002 (2006)]中使用这些3-RDM重构来计算基态能量,并与收缩薛定谔方程和几种波函数方法得到的能量进行比较。