Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, 1650 Owens street, San Francisco, CA 94158, USA.
Brief Funct Genomics. 2011 Jan;10(1):37-49. doi: 10.1093/bfgp/elq038.
Pluripotent embryonic stem (ES) cells are specialized cells with a dynamic chromatin structure, which is intimately connected with their pluripotency and physiology. In recent years somatic cells have been reprogrammed to a pluripotent state through over-expression of a defined set of transcription factors. These cells, known as induced pluripotent stem (iPS) cells, recapitulate ES cell properties and can be differentiated to apparently all cell lineages, making iPS cells a suitable replacement for ES cells in future regenerative medicine. Chromatin modifiers play a key function in establishing and maintaining pluripotency, therefore, elucidating the mechanisms controlling chromatin structure in both ES and iPS cells is of utmost importance to understanding their properties and harnessing their therapeutic potential. In this review, we discuss recent studies that provide a genome-wide view of the chromatin structure signature in ES cells and iPS cells and that highlight the central role of histone modifiers and chromatin remodelers in pluripotency maintenance and induction.
多能胚胎干细胞(ES 细胞)是具有动态染色质结构的特化细胞,其与多能性和生理学密切相关。近年来,通过过度表达一组特定的转录因子,体细胞已被重编程为多能状态。这些细胞称为诱导多能干细胞(iPS 细胞),它们再现了 ES 细胞的特性,并且可以分化为明显的所有细胞谱系,使 iPS 细胞成为未来再生医学中 ES 细胞的合适替代品。染色质修饰物在建立和维持多能性方面起着关键作用,因此,阐明控制 ES 细胞和 iPS 细胞中染色质结构的机制对于理解它们的特性和利用它们的治疗潜力至关重要。在这篇综述中,我们讨论了最近的研究,这些研究提供了 ES 细胞和 iPS 细胞染色质结构特征的全基因组视图,并强调了组蛋白修饰物和染色质重塑因子在维持和诱导多能性中的核心作用。