Suppr超能文献

胚胎干细胞命运的表观遗传控制。

Epigenetic control of embryonic stem cell fate.

机构信息

Biotech Research and Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark.

出版信息

J Exp Med. 2010 Oct 25;207(11):2287-95. doi: 10.1084/jem.20101438.

Abstract

Embryonic stem (ES) cells are derived from the inner cell mass of the preimplantation embryo and are pluripotent, as they are able to differentiate into all cell types of the adult organism. Once established, the pluripotent ES cells can be maintained under defined culture conditions, but can also be induced rapidly to differentiate. Maintaining this balance of stability versus plasticity is a challenge, and extensive studies in recent years have focused on understanding the contributions of transcription factors and epigenetic enzymes to the "stemness" properties of these cells. Identifying the molecular switches that regulate ES cell self-renewal versus differentiation can provide insights into the nature of the pluripotent state and enhance the potential use of these cells in therapeutic applications. Here, we review the latest models for how changes in chromatin methylation can modulate ES cell fate, focusing on two major repressive pathways, Polycomb group (PcG) repressive complexes and promoter DNA methylation.

摘要

胚胎干细胞(ES 细胞)来源于着床前胚胎的内细胞团,具有多能性,因为它们能够分化为成体组织的所有细胞类型。一旦建立,多能 ES 细胞可以在定义的培养条件下维持,但也可以迅速诱导分化。维持这种稳定性与可塑性之间的平衡是一个挑战,近年来广泛的研究集中于理解转录因子和表观遗传酶对这些细胞“干性”特性的贡献。确定调节 ES 细胞自我更新与分化的分子开关可以深入了解多能状态的本质,并增强这些细胞在治疗应用中的潜在用途。在这里,我们综述了染色质甲基化变化如何调节 ES 细胞命运的最新模型,重点介绍了两个主要的抑制途径,多梳抑制复合物(PcG)和启动子 DNA 甲基化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c443/2964577/20b88e96fd49/JEM_20101438_RGB_Fig1.jpg

相似文献

1
Epigenetic control of embryonic stem cell fate.
J Exp Med. 2010 Oct 25;207(11):2287-95. doi: 10.1084/jem.20101438.
2
DNA methylation in embryonic stem cells.
J Cell Biochem. 2010 Jan 1;109(1):1-6. doi: 10.1002/jcb.22374.
3
How is pluripotency determined and maintained?
Development. 2007 Feb;134(4):635-46. doi: 10.1242/dev.02787. Epub 2007 Jan 10.
5
The Epigenetic Paradox of Pluripotent ES Cells.
J Mol Biol. 2017 May 19;429(10):1476-1503. doi: 10.1016/j.jmb.2016.12.009. Epub 2016 Dec 15.
6
In or out stemness: comparing growth factor signalling in mouse embryonic stem cells and primordial germ cells.
Curr Stem Cell Res Ther. 2009 May;4(2):87-97. doi: 10.2174/157488809788167391.
7
Polycomb complexes repress developmental regulators in murine embryonic stem cells.
Nature. 2006 May 18;441(7091):349-53. doi: 10.1038/nature04733. Epub 2006 Apr 19.
8
Chromatin regulation and dynamics in stem cells.
Curr Top Dev Biol. 2020;138:1-71. doi: 10.1016/bs.ctdb.2019.11.002. Epub 2019 Dec 30.
9
Nonoverlapping functions of the Polycomb group Cbx family of proteins in embryonic stem cells.
Cell Stem Cell. 2012 Jan 6;10(1):47-62. doi: 10.1016/j.stem.2011.12.006.
10
Polycomb repressive complex 2 is dispensable for maintenance of embryonic stem cell pluripotency.
Stem Cells. 2008 Jun;26(6):1496-505. doi: 10.1634/stemcells.2008-0102. Epub 2008 Apr 10.

引用本文的文献

2
Polycomb repressive complex 2 (PRC2) pathway's role in cancer cell plasticity and drug resistance.
Funct Integr Genomics. 2025 Mar 6;25(1):53. doi: 10.1007/s10142-025-01563-8.
3
PARP-1 is a transcriptional rheostat of metabolic and bivalent genes during development.
Life Sci Alliance. 2023 Nov 27;7(2). doi: 10.26508/lsa.202302369. Print 2024 Feb.
4
Lysine 68 Methylation-Dependent SOX9 Stability Control Modulates Chondrogenic Differentiation in Dental Pulp Stem Cells.
Adv Sci (Weinh). 2023 Aug;10(24):e2206757. doi: 10.1002/advs.202206757. Epub 2023 Jun 29.
5
Epigenetic Regulation of Driver Genes in Testicular Tumorigenesis.
Int J Mol Sci. 2023 Feb 19;24(4):4148. doi: 10.3390/ijms24044148.
6
Epigenetic Regulation of Methylation in Determining the Fate of Dental Mesenchymal Stem Cells.
Stem Cells Int. 2022 Sep 22;2022:5015856. doi: 10.1155/2022/5015856. eCollection 2022.
8
Kaposi's sarcoma-associated herpesvirus promotes mesenchymal-to-endothelial transition by resolving the bivalent chromatin of PROX1 gene.
PLoS Pathog. 2021 Sep 7;17(9):e1009847. doi: 10.1371/journal.ppat.1009847. eCollection 2021 Sep.

本文引用的文献

1
Long noncoding RNA as modular scaffold of histone modification complexes.
Science. 2010 Aug 6;329(5992):689-93. doi: 10.1126/science.1192002. Epub 2010 Jul 8.
2
Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway.
Science. 2010 Jul 2;329(5987):78-82. doi: 10.1126/science.1187945.
5
Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination.
Mol Cell. 2010 May 14;38(3):452-64. doi: 10.1016/j.molcel.2010.02.032.
6
Distinct epigenomic landscapes of pluripotent and lineage-committed human cells.
Cell Stem Cell. 2010 May 7;6(5):479-91. doi: 10.1016/j.stem.2010.03.018.
7
CpG islands influence chromatin structure via the CpG-binding protein Cfp1.
Nature. 2010 Apr 15;464(7291):1082-6. doi: 10.1038/nature08924.
8
An Oct4-centered protein interaction network in embryonic stem cells.
Cell Stem Cell. 2010 Apr 2;6(4):369-381. doi: 10.1016/j.stem.2010.02.014.
9
Polycomb group protein-mediated repression of transcription.
Trends Biochem Sci. 2010 Jun;35(6):323-32. doi: 10.1016/j.tibs.2010.02.009. Epub 2010 Mar 24.
10
Chromatin signature of embryonic pluripotency is established during genome activation.
Nature. 2010 Apr 8;464(7290):922-6. doi: 10.1038/nature08866. Epub 2010 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验