Suppr超能文献

通过 I-TASSER 结构组装模拟进行计算蛋白质设计和大规模评估。

Computational protein design and large-scale assessment by I-TASSER structure assembly simulations.

机构信息

Center for Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109-2218, USA.

出版信息

J Mol Biol. 2011 Apr 15;407(5):764-76. doi: 10.1016/j.jmb.2011.02.017. Epub 2011 Feb 15.

Abstract

Protein design aims at designing new protein molecules of desired structure and functionality. One of the major obstacles to large-scale protein design are the extensive time and manpower requirements for experimental validation of designed sequences. Recent advances in protein structure prediction have provided potentials for an automated assessment of the designed sequences via folding simulations. We present a new protocol for protein design and validation. The sequence space is initially searched by Monte Carlo sampling guided by a public atomic potential, with candidate sequences selected by the clustering of sequence decoys. The designed sequences are then assessed by I-TASSER folding simulations, which generate full-length atomic structural models by the iterative assembly of threading fragments. The protocol is tested on 52 nonhomologous single-domain proteins, with an average sequence identity of 24% between the designed sequences and the native sequences. Despite this low sequence identity, three-dimensional models predicted for the first designed sequence have an RMSD of <2 Å to the target structure in 62% of cases. This percentage increases to 77% if we consider the three-dimensional models from the top 10 designed sequences. Such a striking consistency between the target structure and the structural prediction from nonhomologous sequences, despite the fact that the design and folding algorithms adopt completely different force fields, indicates that the design algorithm captures the features essential to the global fold of the target. On average, the designed sequences have a free energy that is 0.39 kcal/(mol residue) lower than in the native sequences, potentially affording a greater stability to synthesized target folds.

摘要

蛋白质设计旨在设计具有所需结构和功能的新蛋白质分子。大规模蛋白质设计的主要障碍之一是设计序列的实验验证需要大量的时间和人力。最近蛋白质结构预测的进展为通过折叠模拟对设计序列进行自动评估提供了潜力。我们提出了一种新的蛋白质设计和验证方案。首先通过公共原子势的蒙特卡罗采样搜索序列空间,然后通过序列诱饵的聚类选择候选序列。然后通过 I-TASSER 折叠模拟评估设计序列,该模拟通过串联片段的迭代组装生成全长原子结构模型。该方案在 52 个非同源单域蛋白上进行了测试,设计序列与天然序列之间的平均序列同一性为 24%。尽管序列同一性较低,但对于第一个设计序列,预测的三维模型在 62%的情况下与目标结构的 RMSD<2 Å。如果我们考虑前 10 个设计序列中的三维模型,则该百分比增加到 77%。尽管设计和折叠算法采用完全不同的力场,但在非同源序列中,目标结构和结构预测之间存在如此显著的一致性,这表明设计算法捕捉到了目标全局折叠的关键特征。平均而言,设计序列的自由能比天然序列低 0.39 kcal/(mol 残基),这可能为合成目标折叠提供更大的稳定性。

相似文献

5
8
Ab initio protein structure prediction using chunk-TASSER.使用分块TASSER进行从头算蛋白质结构预测。
Biophys J. 2007 Sep 1;93(5):1510-8. doi: 10.1529/biophysj.107.109959. Epub 2007 May 11.

引用本文的文献

5
Changing the Apoptosis Pathway through Evolutionary Protein Design.通过进化蛋白质设计改变细胞凋亡途径。
J Mol Biol. 2019 Feb 15;431(4):825-841. doi: 10.1016/j.jmb.2018.12.016. Epub 2019 Jan 6.
6
An Evolution-Based Approach to De Novo Protein Design.一种基于进化的从头蛋白质设计方法。
Methods Mol Biol. 2017;1529:243-264. doi: 10.1007/978-1-4939-6637-0_12.
10
Evolution of the metazoan mitochondrial replicase.后生动物线粒体复制酶的进化。
Genome Biol Evol. 2015 Mar 3;7(4):943-59. doi: 10.1093/gbe/evv042.

本文引用的文献

6
Progress and challenges in protein structure prediction.蛋白质结构预测的进展与挑战
Curr Opin Struct Biol. 2008 Jun;18(3):342-8. doi: 10.1016/j.sbi.2008.02.004. Epub 2008 Apr 22.
10
Automated server predictions in CASP7.CASP7中的自动化服务器预测。
Proteins. 2007;69 Suppl 8:68-82. doi: 10.1002/prot.21761.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验