Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA.
Department of Pathology, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA.
J Mol Biol. 2019 Feb 15;431(4):825-841. doi: 10.1016/j.jmb.2018.12.016. Epub 2019 Jan 6.
One obstacle in de novo protein design is the vast sequence space that needs to be searched through to obtain functional proteins. We developed a new method using structural profiles created from evolutionarily related proteins to constrain the simulation search process, with functions specified by atomic-level ligand-protein binding interactions. The approach was applied to redesigning the BIR3 domain of the X-linked inhibitor of apoptosis protein (XIAP), whose primary function is to suppress the cell death by inhibiting caspase-9 activity; however, the function of the wild-type XIAP can be eliminated by the binding of Smac peptides. Isothermal calorimetry and luminescence assay reveal that the designed XIAP domains can bind strongly with the Smac peptides but do not significantly inhibit the caspase-9 proteolytic activity in vitro compared with the wild-type XIAP protein. Detailed mutation assay experiments suggest that the binding specificity in the designs is essentially determined by the interplay of structural profile and physical interactions, which demonstrates the potential to modify apoptosis pathways through computational design.
从头设计蛋白质的一个障碍是需要通过搜索来获得功能蛋白质的巨大序列空间。我们开发了一种新方法,使用来自进化相关蛋白质的结构分布来约束模拟搜索过程,其功能由原子级配体-蛋白质结合相互作用指定。该方法应用于重新设计凋亡抑制蛋白(XIAP)的 BIR3 结构域,其主要功能是通过抑制 caspase-9 的活性来抑制细胞死亡;然而,野生型 XIAP 的功能可以通过 Smac 肽的结合而消除。等温量热法和荧光检测显示,与野生型 XIAP 蛋白相比,设计的 XIAP 结构域可以与 Smac 肽强烈结合,但在体外对 caspase-9 的蛋白水解活性没有明显抑制作用。详细的突变实验表明,设计中的结合特异性主要取决于结构分布和物理相互作用的相互作用,这证明了通过计算设计来修饰细胞凋亡途径的潜力。