Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
Micron. 2011 Jul;42(5):461-70. doi: 10.1016/j.micron.2011.01.004. Epub 2011 Jan 25.
Energy-filtered Analytical Electron Microscopy (AEM) was used to image the ultrastructure and determine quantitatively the chemical composition of rat melanosomes of the choroid and the Retinal Pigment Epithelium (RPE). For the first time, the effect of staining in elemental analysis of melanosomes was investigated. Detection limits and accuracies of the applied methods were determined. Compared to previous work applying only quantitative Energy Dispersive X-ray microanalysis (EDX) in the TEM (Eibl, O., et al., 2006. Micron 37, 262), here we present a combined quantitative EDX and Electron Energy Loss Spectroscopy (EELS) analysis, including N. This yields the fraction of eumelanin and pheomelanin in melanosomes by the S/N mole fraction ratio. Melanosomes of the sepia ink sac, used as eumelanin standard, showed an S/N mole fraction ratio of <0.004. Thus, they consist primarily of eumelanin as reported by degradation analysis. In contrast, melanosomes of the rats contained mixed melanin with significant amounts of pheomelanin (S/N 0.02) in the RPE and the choroid. Consistent with the previous publication, it was shown that oxygen mole fractions are especially large in melanosomes (7-10 at.%) compared to other cell compartments, e.g. 2-4 at.% oxygen in the cytoplasm. In the melanosomes of non-stained tissue, the oxygen mole fraction clearly correlated with the Ca mole fraction. EDX spectra used for quantitative analysis had about 15,000 net counts under the oxygen peak, which is necessary to obtain (i) a small statistical error for oxygen and (ii) optimum minimum detectable mole fractions for S, Ca and transition metals. The precise determination of the oxygen mole fraction in melanosomes is important for understanding metabolism. Therefore, a detailed analysis was carried out on the possible errors affecting quantification. While O, S, and N mole fractions yielded similar results in stained and non-stained ocular melanosomes of rats, transition metals can only be determined reliably in non-stained tissues. High-precision EDX analysis of melanosomes yielded minimum detectable mole fractions of less than 0.04 at.% for Cu and Zn, these elements were present in melanosomes with mole fractions of about 0.3 at.% and 0.1at.%, respectively. Zn is of great importance for metabolism and for age related macular degeneration. Its mole fraction in melanosomes of rats is large enough to be detected and to be quantitatively analyzed by EDX spectroscopy. Ultrastructural information can now be correlated to the elemental composition. This is important to better understand the physical and chemical properties of melanosomal metabolism and turnover.
能量过滤分析电子显微镜(AEM)用于对脉络膜和视网膜色素上皮(RPE)中的大鼠黑素体的超微结构进行成像,并定量确定其化学成分。这是首次研究染色对黑素体元素分析的影响。还确定了应用方法的检测限和准确度。与之前仅在 TEM 中应用定量能量色散 X 射线微分析(EDX)的工作相比(Eibl,O.,et al.,2006.Micron37,262),我们在这里提出了一种结合定量 EDX 和电子能量损失光谱(EELS)分析的方法,包括 N。通过 S/N 摩尔分数比可以得出黑素体中真黑素和褐黑素的分数。乌贼墨囊中用作真黑素标准的黑素体的 S/N 摩尔分数比小于 0.004。因此,正如降解分析所报道的,它们主要由真黑素组成。相比之下,大鼠黑素体中含有混合黑色素,RPE 和脉络膜中的褐黑素含量明显较高(S/N0.02)。与之前的出版物一致,结果表明与其他细胞区室相比,黑素体中的氧摩尔分数特别大(7-10 at.%),例如细胞质中的氧摩尔分数为 2-4 at.%。在未经染色的组织中的黑素体中,氧摩尔分数与 Ca 摩尔分数明显相关。用于定量分析的 EDX 光谱在氧峰下有大约 15,000 个净计数,这对于获得(i)氧的小统计误差和(ii)S、Ca 和过渡金属的最佳最小可检测摩尔分数是必要的。精确确定黑素体中的氧摩尔分数对于理解代谢很重要。因此,对影响定量的可能误差进行了详细分析。虽然在染色和未染色的大鼠眼黑素体中,O、S 和 N 摩尔分数得到了相似的结果,但只有在未染色的组织中才能可靠地确定过渡金属。对黑素体进行高精度 EDX 分析,可检测到 Cu 和 Zn 的最小可检测摩尔分数低于 0.04 at.%,这些元素在黑素体中的摩尔分数分别约为 0.3 at.%和 0.1at.%。Zn 对代谢和年龄相关性黄斑变性非常重要。其在大鼠黑素体中的摩尔分数足以通过 EDX 光谱进行检测和定量分析。现在可以将超微结构信息与元素组成相关联。这对于更好地了解黑素体代谢和周转的物理和化学性质非常重要。