Suppr超能文献

钙离子及1型分泌途径钙-ATP酶泵(SPCA1)在高尔基体内运输中的作用。

Roles of Ca and secretory pathway Ca-ATPase pump type 1 (SPCA1) in intra-Golgi transport.

作者信息

Micaroni Massimo, Mironov Alexander A

机构信息

Department of Molecular Cell Biology; institute for Molecular Bioscience; The University of Queensland; Brisbane, QLD Australia.

出版信息

Commun Integr Biol. 2010 Nov;3(6):504-7. doi: 10.4161/cib.3.6.13211. Epub 2010 Nov 1.

Abstract

Mechanisms for intra-Golgi transport remain a hotly debated topic. Recently, we published data illuminating a new aspect involved in intra-Golgi transport, namely a release of free cytosolic Ca(2+) (Ca(2+)) from the lumen of Golgi cisternae that is fundamental for the secretion and the progression of newly synthesized proteins through the Golgi apparatus (GA). This increase in Ca(2+) during the late stage of synchronous intra-Golgi transport stimulates the fusion of membranes containing cargo proteins and Golgi cisternae, allowing the progression of proteins through the GA. Subsequent restoration of the basal Ca(2+) is also important for the delivery of cargo to the proper final destination. Additionally, the secretory pathway Ca(2+)-ATPase Ca(2+) pump (SPCA1) plays an essential role at this stage. The fine regulation of membrane fusion is also important for the formation and the maintenance of the Golgi ribbon and SPCA1, which regulates Ca(2+) levels, can be considered a controller of trafficking. This evidence contradicts a model of intra-Golgi transport in which permanent membrane continuity allows cargo diffusion and progression.

摘要

高尔基体内部运输机制仍然是一个备受争议的热门话题。最近,我们发表的数据揭示了高尔基体内部运输涉及的一个新方面,即高尔基体潴泡腔中游离胞质Ca(2+)(Ca(2+))的释放,这对于新合成蛋白质通过高尔基体(GA)的分泌和进程至关重要。在同步高尔基体内部运输后期,Ca(2+)的这种增加刺激了含有货物蛋白的膜与高尔基体潴泡的融合,使蛋白质能够通过GA进行转运。随后将基础Ca(2+)恢复到正常水平对于将货物运送到合适的最终目的地也很重要。此外,分泌途径Ca(2+)-ATP酶Ca(2+)泵(SPCA1)在此阶段起着至关重要的作用。膜融合的精细调节对于高尔基体带的形成和维持也很重要,而调节Ca(2+)水平的SPCA1可以被视为运输的控制器。这一证据与高尔基体内部运输模型相矛盾,在该模型中,永久的膜连续性允许货物扩散和转运。

相似文献

1
Roles of Ca and secretory pathway Ca-ATPase pump type 1 (SPCA1) in intra-Golgi transport.
Commun Integr Biol. 2010 Nov;3(6):504-7. doi: 10.4161/cib.3.6.13211. Epub 2010 Nov 1.
2
The SPCA1 Ca2+ pump and intracellular membrane trafficking.
Traffic. 2010 Oct;11(10):1315-33. doi: 10.1111/j.1600-0854.2010.01096.x.
3
Synchronous intra-Golgi transport induces the release of Ca2+ from the Golgi apparatus.
Exp Cell Res. 2010 Aug 1;316(13):2071-86. doi: 10.1016/j.yexcr.2010.04.024. Epub 2010 Apr 24.
7
Activity of the SPCA1 Calcium Pump Couples Sphingomyelin Synthesis to Sorting of Secretory Proteins in the Trans-Golgi Network.
Dev Cell. 2018 Nov 19;47(4):464-478.e8. doi: 10.1016/j.devcel.2018.10.012. Epub 2018 Nov 1.
9
Store-independent coupling between the Secretory Pathway Ca transport ATPase SPCA1 and Orai1 in Golgi stress and Hailey-Hailey disease.
Biochim Biophys Acta Mol Cell Res. 2018 Jun;1865(6):855-862. doi: 10.1016/j.bbamcr.2018.03.007. Epub 2018 Mar 17.

引用本文的文献

1
The impact of manganese on vascular endothelium.
Toxicol Res. 2024 Aug 13;40(4):501-517. doi: 10.1007/s43188-024-00260-1. eCollection 2024 Oct.
2
Structure and transport mechanism of the human calcium pump SPCA1.
Cell Res. 2023 Jul;33(7):533-545. doi: 10.1038/s41422-023-00827-x. Epub 2023 May 31.
3
Calcium Signaling in ß-cell Physiology and Pathology: A Revisit.
Int J Mol Sci. 2019 Dec 4;20(24):6110. doi: 10.3390/ijms20246110.
4
Mosaic variant in ATP2C1 presenting as relapsing linear acantholytic dermatosis.
Br J Dermatol. 2020 Jul;183(1):155-157. doi: 10.1111/bjd.18607. Epub 2019 Dec 11.
5
Friend and foe: β-cell Ca signaling and the development of diabetes.
Mol Metab. 2019 Mar;21:1-12. doi: 10.1016/j.molmet.2018.12.007. Epub 2018 Dec 24.
6
The Trans Golgi Region is a Labile Intracellular Ca Store Sensitive to Emetine.
Sci Rep. 2018 Nov 21;8(1):17143. doi: 10.1038/s41598-018-35280-z.
7
The key target of neuroprotection after the onset of ischemic stroke: secretory pathway Ca(2+)-ATPase 1.
Neural Regen Res. 2015 Aug;10(8):1271-8. doi: 10.4103/1673-5374.162760.
8
Control systems and coordination protocols of the secretory pathway.
F1000Prime Rep. 2014 Oct 1;6:88. doi: 10.12703/P6-88. eCollection 2014.

本文引用的文献

1
Molecular mechanisms responsible for formation of Golgi ribbon.
Histol Histopathol. 2011 Jan;26(1):117-33. doi: 10.14670/HH-26.117.
2
The role of calcium in intracellular trafficking.
Curr Mol Med. 2010 Nov;10(8):763-73. doi: 10.2174/156652410793384204.
3
The SPCA1 Ca2+ pump and intracellular membrane trafficking.
Traffic. 2010 Oct;11(10):1315-33. doi: 10.1111/j.1600-0854.2010.01096.x.
4
Unique characteristics of Ca2+ homeostasis of the trans-Golgi compartment.
Proc Natl Acad Sci U S A. 2010 May 18;107(20):9198-203. doi: 10.1073/pnas.1004702107. Epub 2010 May 3.
5
Synchronous intra-Golgi transport induces the release of Ca2+ from the Golgi apparatus.
Exp Cell Res. 2010 Aug 1;316(13):2071-86. doi: 10.1016/j.yexcr.2010.04.024. Epub 2010 Apr 24.
6
Ca(2+) channels on the move.
Biochemistry. 2009 Dec 29;48(51):12062-80. doi: 10.1021/bi901739t.
8
Group IV phospholipase A(2)alpha controls the formation of inter-cisternal continuities involved in intra-Golgi transport.
PLoS Biol. 2009 Sep;7(9):e1000194. doi: 10.1371/journal.pbio.1000194. Epub 2009 Sep 15.
9
Membrane fusion: role of SNAREs and calcium.
Protein Pept Lett. 2009;16(7):712-7. doi: 10.2174/092986609788681869.
10
Membrane fusion: grappling with SNARE and SM proteins.
Science. 2009 Jan 23;323(5913):474-7. doi: 10.1126/science.1161748.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验