Suppr超能文献

雌雄同体植物中种子和花粉移动的估计:整合遗传和生态数据的层次贝叶斯方法。

Estimating seed and pollen movement in a monoecious plant: a hierarchical Bayesian approach integrating genetic and ecological data.

机构信息

NIMBioS, University of Tennessee, Knoxville, TN 37996-1527, USA.

出版信息

Mol Ecol. 2011 Mar;20(6):1248-62. doi: 10.1111/j.1365-294X.2011.05019.x. Epub 2011 Feb 17.

Abstract

The scale of seed and pollen movement in plants has a critical influence on population dynamics and interspecific interactions, as well as on their capacity to respond to environmental change through migration or local adaptation. However, dispersal can be challenging to quantify. Here, we present a Bayesian model that integrates genetic and ecological data to simultaneously estimate effective seed and pollen dispersal parameters and the parentage of sampled seedlings. This model is the first developed for monoecious plants that accounts for genotyping error and treats dispersal from within and beyond a plot in a fully consistent manner. The flexible Bayesian framework allows the incorporation of a variety of ecological variables, including individual variation in seed production, as well as multiple sources of uncertainty. We illustrate the method using data from a mixed population of red oak (Quercus rubra, Q. velutina, Q. falcata) in the NC piedmont. For simulated test data sets, the model successfully recovered the simulated dispersal parameters and pedigrees. Pollen dispersal in the example population was extensive, with an average father-mother distance of 178 m. Estimated seed dispersal distances at the piedmont site were substantially longer than previous estimates based on seed-trap data (average 128 m vs. 9.3 m), suggesting that, under some circumstances, oaks may be less dispersal-limited than is commonly thought, with a greater potential for range shifts in response to climate change.

摘要

种子和花粉在植物中的传播规模对种群动态和种间相互作用有至关重要的影响,也对它们通过迁移或局部适应来响应环境变化的能力有重要影响。然而,扩散很难量化。在这里,我们提出了一个贝叶斯模型,该模型整合了遗传和生态数据,以同时估计有效种子和花粉扩散参数以及被采样幼苗的亲代关系。该模型是第一个针对雌雄同体植物开发的模型,它考虑了基因分型错误,并以完全一致的方式处理来自样地内外的扩散。灵活的贝叶斯框架允许纳入各种生态变量,包括种子产量的个体差异,以及多种不确定性来源。我们使用北卡罗来纳州皮埃蒙特的红栎(Quercus rubra、Q. velutina、Q. falcata)混合种群的数据来说明该方法。对于模拟测试数据集,该模型成功地恢复了模拟的扩散参数和系谱。示例种群中的花粉扩散范围很广,平均父-母距离为 178 米。在皮埃蒙特地区的估计种子扩散距离远远长于以前基于种子陷阱数据的估计(平均 128 米与 9.3 米),这表明在某些情况下,栎树可能不像普遍认为的那样受到扩散限制,在应对气候变化方面有更大的范围转移潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验