Howard Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, California Institute of Quantitative Biomedical Science, University of California, San Francisco, 1700 4th Street, San Francisco, CA 94158, USA.
J Mol Biol. 2011 Apr 22;408(1):1-8. doi: 10.1016/j.jmb.2011.02.025. Epub 2011 Feb 17.
A remarkable feature of prion biology is that the same prion protein can misfold into more than one infectious conformation, and these conformations in turn lead to distinct heritable prion strains with different phenotypes. The yeast prion [PSI(+)] is a powerful system for studying how changes in strain conformation affect cross-species transmission. We have previously established that a chimera of the Saccharomyces cerevisiae (SC) and Candida albicans (CA) Sup35 prion domains can cross the SC/CA species barrier in a strain-dependent manner. In vitro, the conversion of the monomeric chimera into the prion (amyloid) form can be seeded by either SC or CA Sup35 amyloid fibers, resulting in two strains: Chim[SC] and Chim[CA]. These strains have a "molecular memory" of their originating species in that Chim[SC] preferentially seeds the conversion of SC Sup35, and vice versa. To investigate how this species specificity is conformationally encoded, we used amide exchange and limited proteolysis to probe the structures of these two strains. We found that the amyloid cores of Chim[SC] and Chim[CA] are predominantly confined to the SC-derived and CA-derived residues, respectively. In addition, the chimera is able to propagate the Chim[CA] conformation even when the SC residues comprising the Chim[SC] core were deleted. Thus, the two strains have non-overlapping and modular amyloid cores that determine whether SC or CA residues are presented on the growing face of the prion seed. These observations establish how conformations determine the specificity of prion transmission and demonstrate a remarkable plasticity to amyloid misfolding.
朊病毒生物学的一个显著特征是,同一种朊病毒蛋白可以错误折叠成多种感染构象,而这些构象反过来又导致具有不同表型的独特可遗传朊病毒株。酵母朊病毒 [PSI(+)] 是研究构象变化如何影响种间传播的强大系统。我们之前已经证实,酿酒酵母 (SC) 和白色念珠菌 (CA) Sup35 朊病毒结构域的嵌合体可以以依赖菌株的方式跨越 SC/CA 种间障碍。在体外,单体嵌合体转化为朊病毒(淀粉样纤维)的过程可以被 SC 或 CA Sup35 淀粉样纤维引发,从而产生两种菌株:Chim[SC] 和 Chim[CA]。这些菌株具有其起源物种的“分子记忆”,即 Chim[SC] 优先引发 SC Sup35 的转化,反之亦然。为了研究这种种间特异性是如何通过构象编码的,我们使用酰胺交换和有限蛋白水解来探测这两种菌株的结构。我们发现,Chim[SC] 和 Chim[CA] 的淀粉样核心主要局限于 SC 衍生和 CA 衍生的残基。此外,即使删除了构成 Chim[SC]核心的 SC 残基,嵌合体仍能够传播 Chim[CA]构象。因此,这两种菌株具有非重叠且模块化的淀粉样核心,决定了 SC 或 CA 残基是否出现在朊病毒种子的生长面上。这些观察结果确定了构象如何决定朊病毒传播的特异性,并证明了淀粉样纤维错误折叠的显著可塑性。