Suppr超能文献

肽偶联支架递送来的细胞的活力和功能。

Viability and functionality of cells delivered from peptide conjugated scaffolds.

机构信息

Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02139, United States.

出版信息

Biomaterials. 2011 May;32(15):3721-8. doi: 10.1016/j.biomaterials.2010.12.048. Epub 2011 Feb 21.

Abstract

Many cell-based therapies aim to transplant functional cells to revascularize damaged tissues and ischemic areas. However, conventional cell therapy is not optimally efficient: massive cell death, damage, and non-localization of cells both spatially and temporally all likely contribute to poor tissue functionality. An alginate cell depot system has been proposed as an alternative means to deliver outgrowth endothelial cells (OECs) in a spatiotemporally controllable manner while protecting them in the early stages of tissue re-integration. Here OECs exiting the alginate scaffold were measured for viability, functionality, and migration speed and characterized for cytokine and surface marker profiles. OECs were highly viable in the alginate and were depleted from the scaffold via migration at a speed of 21 ± 6 μm/h following release. Prolonged interaction with the alginate scaffold microenvironment did not detrimentally change OECs; they retained high functionality, displayed a similar angiogenic cytokine profile as control OECs, and did not have significantly altered surface markers. These results suggest that alginate-OEC interactions do not adversely affect these cells, validating control of cellular migration as a means to control the cell delivery profile from the material system, and supporting usage of the alginate scaffold as an efficient cell delivery vehicle.

摘要

许多基于细胞的疗法旨在移植功能细胞以重新使受损组织和缺血区域血管化。然而,传统的细胞疗法效率并不理想:大量细胞死亡、损伤以及细胞在空间和时间上的非定位都可能导致组织功能不佳。藻酸盐细胞库系统已被提议作为一种替代方法,以时空可控的方式输送生长的内皮细胞(OEC),同时在组织重新整合的早期阶段保护它们。在这里,藻酸盐支架中释放的 OEC 被测量其活力、功能和迁移速度,并对细胞因子和表面标记物进行特征分析。OEC 在藻酸盐中具有高活力,并通过迁移在释放后以 21 ± 6 μm/h 的速度从支架中耗尽。与藻酸盐支架微环境的长时间相互作用并没有对 OEC 造成不利影响;它们保留了高功能,表现出与对照 OEC 相似的血管生成细胞因子谱,并且表面标记物没有明显改变。这些结果表明,藻酸盐-OEC 相互作用不会对这些细胞产生不利影响,验证了细胞迁移的控制作为控制材料系统中细胞输送分布的一种手段,并支持藻酸盐支架作为有效的细胞输送载体的使用。

相似文献

1
Viability and functionality of cells delivered from peptide conjugated scaffolds.
Biomaterials. 2011 May;32(15):3721-8. doi: 10.1016/j.biomaterials.2010.12.048. Epub 2011 Feb 21.
2
Chitosan-alginate as scaffolding material for cartilage tissue engineering.
J Biomed Mater Res A. 2005 Nov 1;75(2):485-93. doi: 10.1002/jbm.a.30449.
3
Influence of mechanical properties of alginate-based substrates on the performance of Schwann cells in culture.
J Biomater Sci Polym Ed. 2016 Jun;27(9):898-915. doi: 10.1080/09205063.2016.1170415. Epub 2016 Apr 22.
4
Design and fabrication of a biodegradable, covalently crosslinked shape-memory alginate scaffold for cell and growth factor delivery.
Tissue Eng Part A. 2012 Oct;18(19-20):2000-7. doi: 10.1089/ten.TEA.2011.0663. Epub 2012 Aug 23.
5
Organ weaving: woven threads and sheets as a step towards a new strategy for artificial organ development.
Macromol Biosci. 2011 Nov 10;11(11):1491-8. doi: 10.1002/mabi.201100086. Epub 2011 Sep 13.
6
Preparation of aminated chitosan/alginate scaffold containing halloysite nanotubes with improved cell attachment.
Carbohydr Polym. 2016 Oct 20;151:1120-1131. doi: 10.1016/j.carbpol.2016.06.063. Epub 2016 Jun 21.
7
Alginate/polyoxyethylene and alginate/gelatin hydrogels: preparation, characterization, and application in tissue engineering.
Appl Biochem Biotechnol. 2014 May;173(2):433-48. doi: 10.1007/s12010-014-0851-0. Epub 2014 Apr 12.
9
Regulation of the fate of dental-derived mesenchymal stem cells using engineered alginate-GelMA hydrogels.
J Biomed Mater Res A. 2017 Nov;105(11):2957-2967. doi: 10.1002/jbm.a.36148. Epub 2017 Jul 14.
10
Biocompatible conducting chitosan/polypyrrole-alginate composite scaffold for bone tissue engineering.
Int J Biol Macromol. 2013 Nov;62:465-71. doi: 10.1016/j.ijbiomac.2013.09.028. Epub 2013 Sep 27.

引用本文的文献

1
Engineering peptide-modified alginate-based bioinks with cell-adhesive properties for biofabrication.
RSC Adv. 2024 Apr 26;14(20):13769-13786. doi: 10.1039/d3ra08394b. eCollection 2024 Apr 25.
2
Biomaterial Based Strategies for Engineering New Lymphatic Vasculature.
Adv Healthc Mater. 2020 Sep;9(18):e2000895. doi: 10.1002/adhm.202000895. Epub 2020 Jul 30.
3
Delivery of targeted gene therapies using a hybrid cryogel-coated prosthetic vascular graft.
PeerJ. 2019 Aug 20;7:e7377. doi: 10.7717/peerj.7377. eCollection 2019.
4
Enzymatically degradable alginate hydrogel systems to deliver endothelial progenitor cells for potential revasculature applications.
Biomaterials. 2018 Oct;179:109-121. doi: 10.1016/j.biomaterials.2018.06.038. Epub 2018 Jun 27.
5
3D Cell Culture in Alginate Hydrogels.
Microarrays (Basel). 2015 Mar 24;4(2):133-61. doi: 10.3390/microarrays4020133.
6
Engineered composite fascia for stem cell therapy in tissue repair applications.
Acta Biomater. 2015 Oct;26:1-12. doi: 10.1016/j.actbio.2015.08.012. Epub 2015 Aug 15.
7
Local delivery of VEGF and SDF enhances endothelial progenitor cell recruitment and resultant recovery from ischemia.
Tissue Eng Part A. 2015 Apr;21(7-8):1217-27. doi: 10.1089/ten.TEA.2014.0508. Epub 2015 Jan 23.
8
Biphasic ferrogels for triggered drug and cell delivery.
Adv Healthc Mater. 2014 Nov;3(11):1869-76. doi: 10.1002/adhm.201400095. Epub 2014 May 26.
10
Human umbilical cord stem cell encapsulation in novel macroporous and injectable fibrin for muscle tissue engineering.
Acta Biomater. 2013 Jan;9(1):4688-97. doi: 10.1016/j.actbio.2012.08.009. Epub 2012 Aug 16.

本文引用的文献

1
Toward delivery of multiple growth factors in tissue engineering.
Biomaterials. 2010 Aug;31(24):6279-308. doi: 10.1016/j.biomaterials.2010.04.053. Epub 2010 May 21.
2
Stem cell therapy for the broken heart: mini-organ transplantation.
Transplant Proc. 2009 Oct;41(8):3353-7. doi: 10.1016/j.transproceed.2009.08.033.
3
Material-based deployment enhances efficacy of endothelial progenitor cells.
Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14347-52. doi: 10.1073/pnas.0803873105. Epub 2008 Sep 15.
4
Strategic directions in tissue engineering.
Tissue Eng. 2007 Dec;13(12):2827-37. doi: 10.1089/ten.2007.0335.
5
[Cellular therapy in cardiology].
C R Biol. 2007 Jun-Jul;330(6-7):550-6. doi: 10.1016/j.crvi.2007.05.004. Epub 2007 Jun 29.
6
Understanding the biology of angiogenesis: review of the most important molecular mechanisms.
Blood Cells Mol Dis. 2007 Sep-Oct;39(2):212-20. doi: 10.1016/j.bcmd.2007.04.001. Epub 2007 Jun 6.
7
The rigidity in fibrin gels as a contributing factor to the dynamics of in vitro vascular cord formation.
Microvasc Res. 2007 May;73(3):182-90. doi: 10.1016/j.mvr.2006.12.002. Epub 2006 Dec 16.
8
Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction.
N Engl J Med. 2006 Sep 21;355(12):1210-21. doi: 10.1056/NEJMoa060186.
9
Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction.
N Engl J Med. 2006 Sep 21;355(12):1199-209. doi: 10.1056/NEJMoa055706.
10
Angiogenesis in life, disease and medicine.
Nature. 2005 Dec 15;438(7070):932-6. doi: 10.1038/nature04478.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验