Department of Mathematics, California State University, Fullerton, CA 92834, USA.
Stat Med. 2011 May 30;30(12):1441-54. doi: 10.1002/sim.4192. Epub 2011 Feb 22.
Often in neurophysiological studies, scientists are interested in testing hypotheses regarding the equality of the overall intensity functions of a group of neurons when recorded under two different experimental conditions. In this paper, we consider such a hypothesis testing problem. We propose two test statistics: a parametric test similar to the modified Hotelling's T2 statistic of Behseta and Kass (Statist. Med. 2005; 24:3523–3534), as well as a nonparametric one similar to the spatial signed-rank test statistic of Möttönen and Oja (J. Nonparametric Statist. 1995; 5:201–213). We implement these tests on smooth curves obtained via fitting Bayesian Adaptive Regression Splines (BARS) to the intensity functions of neuronal Peri-Stimulus Time Histograms. Through simulation, we show that the powers of our proposed tests are extremely high even when the number of sampled neurons and the number of trials per neuron are small. Finally, we apply our methods on a group of motor cortex neurons recorded during a reaching task.
在神经生理学研究中,科学家通常有兴趣检验关于在两种不同实验条件下记录的一组神经元的整体强度函数相等的假设。在本文中,我们考虑了这样一个假设检验问题。我们提出了两种检验统计量:一种类似于 Behseta 和 Kass(Statist. Med. 2005; 24:3523–3534)的改进 Hotelling's T2 统计量的参数检验,以及一种类似于 Möttönen 和 Oja(J. Nonparametric Statist. 1995; 5:201–213)的空间符号秩检验统计量的非参数检验。我们通过对神经元的刺激前时间直方图的强度函数进行贝叶斯自适应回归样条(BARS)拟合,得到平滑曲线,并在这些曲线上实施这些检验。通过模拟,我们表明,即使在采样神经元数量和每个神经元的试验数量较少的情况下,我们提出的检验的功效也非常高。最后,我们将我们的方法应用于在一项抓握任务中记录的一组运动皮层神经元。