Suppr超能文献

两种曲线群体的比较及其在神经元数据分析中的应用。

Comparison of two populations of curves with an application in neuronal data analysis.

机构信息

Department of Mathematics, California State University, Fullerton, CA 92834, USA.

出版信息

Stat Med. 2011 May 30;30(12):1441-54. doi: 10.1002/sim.4192. Epub 2011 Feb 22.

Abstract

Often in neurophysiological studies, scientists are interested in testing hypotheses regarding the equality of the overall intensity functions of a group of neurons when recorded under two different experimental conditions. In this paper, we consider such a hypothesis testing problem. We propose two test statistics: a parametric test similar to the modified Hotelling's T2 statistic of Behseta and Kass (Statist. Med. 2005; 24:3523–3534), as well as a nonparametric one similar to the spatial signed-rank test statistic of Möttönen and Oja (J. Nonparametric Statist. 1995; 5:201–213). We implement these tests on smooth curves obtained via fitting Bayesian Adaptive Regression Splines (BARS) to the intensity functions of neuronal Peri-Stimulus Time Histograms. Through simulation, we show that the powers of our proposed tests are extremely high even when the number of sampled neurons and the number of trials per neuron are small. Finally, we apply our methods on a group of motor cortex neurons recorded during a reaching task.

摘要

在神经生理学研究中,科学家通常有兴趣检验关于在两种不同实验条件下记录的一组神经元的整体强度函数相等的假设。在本文中,我们考虑了这样一个假设检验问题。我们提出了两种检验统计量:一种类似于 Behseta 和 Kass(Statist. Med. 2005; 24:3523–3534)的改进 Hotelling's T2 统计量的参数检验,以及一种类似于 Möttönen 和 Oja(J. Nonparametric Statist. 1995; 5:201–213)的空间符号秩检验统计量的非参数检验。我们通过对神经元的刺激前时间直方图的强度函数进行贝叶斯自适应回归样条(BARS)拟合,得到平滑曲线,并在这些曲线上实施这些检验。通过模拟,我们表明,即使在采样神经元数量和每个神经元的试验数量较少的情况下,我们提出的检验的功效也非常高。最后,我们将我们的方法应用于在一项抓握任务中记录的一组运动皮层神经元。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验