Suppr超能文献

腈基硼烷配合物的结构、键合和能量性质:RCN-BH3。

Structure, bonding, and energetic properties of nitrile-borane complexes: RCN-BH3.

机构信息

Department of Chemistry, University of Wisconsin-Eau Claire, 105 Garfield Avenue, Eau Claire, Wisconsin 54702, USA.

出版信息

J Phys Chem A. 2011 Mar 17;115(10):1955-63. doi: 10.1021/jp106391c. Epub 2011 Feb 22.

Abstract

The structural and energetic properties of CH(3)CN-BH(3), HCN-BH(3), FCH(2)CN-BH(3), and F(3)CCN-BH(3) have been examined via density functional theory and post-Hartree-Fock calculations. The B-N distances in these systems are notably short, less than 1.6 Å, and the binding energies are substantial, about 20 kcal/mol. The properties of these systems do vary as a result of the nitrile substituent, but surprisingly, more electronegative substituents result in shorter B-N distances. For example, the B-N distance for F(3)CCN-BH(3) is 1.576 Å via MP2/aug-cc-pVTZ, while that for CH(3)CN-BH(3) is 1.584 Å. However, the binding energies vary as expected, from 17.4 kcal/mol in the case of F(3)CCN-BH(3) to 22.6 kcal/mol for CH(3)CN-BH(3) (via MP2/aug-cc-pVTZ). The extent of charge transfer and the degree of covalent character in the B-N bonds were explored by a natural bond orbital analysis, and the atoms in molecules formalism, respectively, and do provide some rationale for the substituent effects. Frequency calculations indicate that BH(3)-localized vibrational modes do shift appreciably upon complex formation, especially the BH(3) asymmetric stretch. For CH(3)CN-BH(3), experimental and calculated frequency shifts compare well for the asymmetric BH(3) bending mode, but the observed shift for the BH(3) asymmetric stretch, the most structurally sensitive mode, is about 40 cm(-1) larger than the predictions. While this may suggest a very slight contraction of the B-N bond upon formation of solid CH(3)CN-BH(3) (for which experimental data are available) the balance of evidence indicates that no significant medium effects occur in these complexes. We also discuss the distinct differences between these complexes and their BF(3) analogs. The underlying reasons for the markedly different structural properties are illustrated through an energy decomposition analysis applied to HCN-BH(3) and HCN-BF(3). These data indicate that less Pauli repulsion of the electrons on each respective subunit is the most significant factor that favors the overall stability of the BH(3) complex.

摘要

通过密度泛函理论和 Hartree-Fock 后计算,研究了 CH(3)CN-BH(3)、HCN-BH(3)、FCH(2)CN-BH(3)和 F(3)CCN-BH(3)的结构和能量性质。这些体系中的 B-N 距离明显较短,小于 1.6 Å,结合能相当大,约为 20 kcal/mol。由于腈取代基的存在,这些体系的性质确实会发生变化,但令人惊讶的是,电负性更强的取代基会导致 B-N 距离变短。例如,通过 MP2/aug-cc-pVTZ 计算,F(3)CCN-BH(3)的 B-N 距离为 1.576 Å,而 CH(3)CN-BH(3)的 B-N 距离为 1.584 Å。然而,结合能的变化符合预期,从 F(3)CCN-BH(3)的 17.4 kcal/mol 到 CH(3)CN-BH(3)的 22.6 kcal/mol(通过 MP2/aug-cc-pVTZ)。通过自然键轨道分析和分子中原子理论分别探讨了 B-N 键中的电荷转移程度和共价特征,这为取代基效应提供了一些依据。频率计算表明,BH(3)局部振动模式在形成配合物时会发生明显位移,特别是 BH(3)不对称伸缩。对于 CH(3)CN-BH(3),不对称 BH(3)弯曲模式的实验和计算频率位移比较吻合,但观察到 BH(3)不对称伸缩的位移,这是最结构敏感的模式,比预测值大约 40 cm(-1)。虽然这可能表明在形成固态 CH(3)CN-BH(3)时 B-N 键略有收缩(对此有实验数据),但大多数证据表明在这些配合物中没有发生显著的介质效应。我们还讨论了这些配合物与其 BF(3)类似物之间的明显差异。通过对 HCN-BH(3)和 HCN-BF(3)进行能量分解分析,说明了这些配合物结构性质显著不同的原因。这些数据表明,每个亚基上的电子的 Pauli 排斥力较小是有利于 BH(3)配合物整体稳定性的最重要因素。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验