Electronic Systems Engineering Department, Escola Politécnica, Universidade de São Paulo, São Paulo, Brazil.
IEEE Trans Image Process. 2011 Aug;20(8):2241-7. doi: 10.1109/TIP.2011.2118219. Epub 2011 Feb 22.
In Part I ["Fast Transforms for Acoustic Imaging-Part I: Theory," IEEE Transactions on Image Processing], we introduced the Kronecker array transform (KAT), a fast transform for imaging with separable arrays. Given a source distribution, the KAT produces the spectral matrix which would be measured by a separable sensor array. In Part II, we establish connections between the KAT, beamforming and 2-D convolutions, and show how these results can be used to accelerate classical and state of the art array imaging algorithms. We also propose using the KAT to accelerate general purpose regularized least-squares solvers. Using this approach, we avoid ill-conditioned deconvolution steps and obtain more accurate reconstructions than previously possible, while maintaining low computational costs. We also show how the KAT performs when imaging near-field source distributions, and illustrate the trade-off between accuracy and computational complexity. Finally, we show that separable designs can deliver accuracy competitive with multi-arm logarithmic spiral geometries, while having the computational advantages of the KAT.
在第一部分["快速变换用于声学成像 - 第一部分:理论," IEEE 图像处理汇刊]中,我们介绍了 Kronecker 阵列变换(KAT),这是一种用于可分离阵列成像的快速变换。给定源分布,KAT 生成将由可分离传感器阵列测量的谱矩阵。在第二部分中,我们建立了 KAT、波束形成和 2-D 卷积之间的联系,并展示了如何利用这些结果加速经典和最先进的阵列成像算法。我们还提出使用 KAT 来加速通用正则化最小二乘求解器。通过这种方法,我们避免了病态反卷积步骤,并获得了比以前更准确的重建,同时保持了低计算成本。我们还展示了 KAT 在近场源分布成像时的性能,并说明了准确性和计算复杂性之间的权衡。最后,我们表明可分离设计可以提供与多臂对数螺旋几何形状竞争的准确性,同时具有 KAT 的计算优势。