Suppr超能文献

基于双变量经验模态分解的 EEG 不对称性的时频分析。

Time-frequency analysis of EEG asymmetry using bivariate empirical mode decomposition.

机构信息

Department of Electrical and Electronic Engineering, Imperial College London, SW7 2BT London, UK.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2011 Aug;19(4):366-73. doi: 10.1109/TNSRE.2011.2116805. Epub 2011 Feb 22.

Abstract

A novel method is introduced to determine asymmetry, the lateralization of brain activity, using extension of the algorithm empirical mode decomposition (EMD). The localized and adaptive nature of EMD make it highly suitable for estimating amplitude information across frequency for nonlinear and nonstationary data. Analysis illustrates how bivariate extension of EMD (BEMD) facilitates enhanced spectrum estimation for multichannel recordings that contain similar signal components, a realistic assumption in electroencephalography (EEG). It is shown how this property can be used to obtain a more accurate estimate of the marginalized spectrum, critical for the localized calculation of amplitude asymmetry in frequency. Simulations on synthetic data sets and feature estimation for a brain-computer interface (BCI) application are used to validate the proposed asymmetry estimation methodology.

摘要

介绍了一种新的方法来确定不对称性,即大脑活动的偏侧化,使用扩展的算法经验模态分解(EMD)。EMD 的局部性和自适应性使其非常适合估计非线性和非平稳数据的频率上的幅度信息。分析说明了双变量扩展的 EMD(BEMD)如何促进包含相似信号分量的多通道记录的增强频谱估计,这是脑电图(EEG)中的一个现实假设。它展示了如何利用这一特性来获得更准确的边际谱估计,这对于在频率上进行幅度不对称的局部计算至关重要。对合成数据集的模拟和脑机接口(BCI)应用的特征估计用于验证所提出的不对称性估计方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验