Jiao Yang, Zheng Qian, Qiao Dan, Lang Xun, Xie Lei, Pan Yi
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518026, China.
University of Nottingham Ningbo China, Ningbo, 315100, China.
Biol Cybern. 2024 Apr;118(1-2):21-37. doi: 10.1007/s00422-024-00984-1. Epub 2024 Mar 12.
Motor imagery electroencephalogram (EEG) is widely employed in brain-computer interface (BCI) systems. As a time-frequency analysis method for nonlinear and non-stationary signals, multivariate empirical mode decomposition (MEMD) and its noise-assisted version (NA-MEMD) has been widely used in the preprocessing step of BCI systems for separating EEG rhythms corresponding to specific brain activities. However, when applied to multichannel EEG signals, MEMD or NA-MEMD often demonstrate low robustness to noise and high computational complexity. To address these issues, we have explored the advantages of our recently proposed fast multivariate empirical mode decomposition (FMEMD) and its noise-assisted version (NA-FMEMD) for analyzing motor imagery data. We emphasize that FMEMD enables a more accurate estimation of EEG frequency information and exhibits a more noise-robust decomposition performance with improved computational efficiency. Comparative analysis with MEMD on simulation data and real-world EEG validates the above assertions. The joint average frequency measure is employed to automatically select intrinsic mode functions that correspond to specific frequency bands. Thus, FMEMD-based classification architecture is proposed. Using FMEMD as a preprocessing algorithm instead of MEMD can improve the classification accuracy by 2.3% on the BCI Competition IV dataset. On the Physiobank Motor/Mental Imagery dataset and BCI Competition IV Dataset 2a, FMEMD-based architecture also attained a comparable performance to complex algorithms. The results indicate that FMEMD proficiently extracts feature information from small benchmark datasets while mitigating dimensionality constraints resulting from computational complexity. Hence, FMEMD or NA-FMEMD can be a powerful time-frequency preprocessing method for BCI.
运动想象脑电(EEG)广泛应用于脑机接口(BCI)系统。作为一种用于非线性和非平稳信号的时频分析方法,多变量经验模态分解(MEMD)及其噪声辅助版本(NA-MEMD)已广泛应用于 BCI 系统的预处理步骤,用于分离对应于特定脑活动的 EEG 节律。然而,当应用于多通道 EEG 信号时,MEMD 或 NA-MEMD 通常对噪声的鲁棒性较低,计算复杂度较高。为了解决这些问题,我们探索了我们最近提出的快速多变量经验模态分解(FMEMD)及其噪声辅助版本(NA-FMEMD)在分析运动想象数据方面的优势。我们强调,FMEMD 能够更准确地估计 EEG 频率信息,并表现出更稳健的分解性能,同时提高计算效率。通过对模拟数据和真实 EEG 的 MEMD 比较分析验证了上述结论。联合平均频率度量用于自动选择对应于特定频带的固有模态函数。因此,提出了基于 FMEMD 的分类架构。与 MEMD 相比,使用 FMEMD 作为预处理算法可以将 BCI 竞赛 IV 数据集的分类精度提高 2.3%。在 Physiobank 运动/心理想象数据集和 BCI 竞赛 IV 数据集 2a 上,基于 FMEMD 的架构也与复杂算法的性能相当。结果表明,FMEMD 能够从小基准数据集提取特征信息,同时减轻计算复杂度导致的维数约束。因此,FMEMD 或 NA-FMEMD 可以成为 BCI 的强大时频预处理方法。