Suppr超能文献

脑-机接口中运动想象的快速多变量经验模态分解的 EEG 节律分离和时频分析。

EEG rhythm separation and time-frequency analysis of fast multivariate empirical mode decomposition for motor imagery BCI.

作者信息

Jiao Yang, Zheng Qian, Qiao Dan, Lang Xun, Xie Lei, Pan Yi

机构信息

Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518026, China.

University of Nottingham Ningbo China, Ningbo, 315100, China.

出版信息

Biol Cybern. 2024 Apr;118(1-2):21-37. doi: 10.1007/s00422-024-00984-1. Epub 2024 Mar 12.

Abstract

Motor imagery electroencephalogram (EEG) is widely employed in brain-computer interface (BCI) systems. As a time-frequency analysis method for nonlinear and non-stationary signals, multivariate empirical mode decomposition (MEMD) and its noise-assisted version (NA-MEMD) has been widely used in the preprocessing step of BCI systems for separating EEG rhythms corresponding to specific brain activities. However, when applied to multichannel EEG signals, MEMD or NA-MEMD often demonstrate low robustness to noise and high computational complexity. To address these issues, we have explored the advantages of our recently proposed fast multivariate empirical mode decomposition (FMEMD) and its noise-assisted version (NA-FMEMD) for analyzing motor imagery data. We emphasize that FMEMD enables a more accurate estimation of EEG frequency information and exhibits a more noise-robust decomposition performance with improved computational efficiency. Comparative analysis with MEMD on simulation data and real-world EEG validates the above assertions. The joint average frequency measure is employed to automatically select intrinsic mode functions that correspond to specific frequency bands. Thus, FMEMD-based classification architecture is proposed. Using FMEMD as a preprocessing algorithm instead of MEMD can improve the classification accuracy by 2.3% on the BCI Competition IV dataset. On the Physiobank Motor/Mental Imagery dataset and BCI Competition IV Dataset 2a, FMEMD-based architecture also attained a comparable performance to complex algorithms. The results indicate that FMEMD proficiently extracts feature information from small benchmark datasets while mitigating dimensionality constraints resulting from computational complexity. Hence, FMEMD or NA-FMEMD can be a powerful time-frequency preprocessing method for BCI.

摘要

运动想象脑电(EEG)广泛应用于脑机接口(BCI)系统。作为一种用于非线性和非平稳信号的时频分析方法,多变量经验模态分解(MEMD)及其噪声辅助版本(NA-MEMD)已广泛应用于 BCI 系统的预处理步骤,用于分离对应于特定脑活动的 EEG 节律。然而,当应用于多通道 EEG 信号时,MEMD 或 NA-MEMD 通常对噪声的鲁棒性较低,计算复杂度较高。为了解决这些问题,我们探索了我们最近提出的快速多变量经验模态分解(FMEMD)及其噪声辅助版本(NA-FMEMD)在分析运动想象数据方面的优势。我们强调,FMEMD 能够更准确地估计 EEG 频率信息,并表现出更稳健的分解性能,同时提高计算效率。通过对模拟数据和真实 EEG 的 MEMD 比较分析验证了上述结论。联合平均频率度量用于自动选择对应于特定频带的固有模态函数。因此,提出了基于 FMEMD 的分类架构。与 MEMD 相比,使用 FMEMD 作为预处理算法可以将 BCI 竞赛 IV 数据集的分类精度提高 2.3%。在 Physiobank 运动/心理想象数据集和 BCI 竞赛 IV 数据集 2a 上,基于 FMEMD 的架构也与复杂算法的性能相当。结果表明,FMEMD 能够从小基准数据集提取特征信息,同时减轻计算复杂度导致的维数约束。因此,FMEMD 或 NA-FMEMD 可以成为 BCI 的强大时频预处理方法。

相似文献

2
Sinusoidal Signal Assisted Multivariate Empirical Mode Decomposition for Brain-Computer Interfaces.
IEEE J Biomed Health Inform. 2018 Sep;22(5):1373-1384. doi: 10.1109/JBHI.2017.2775657. Epub 2017 Nov 20.
3
Classification of motor imagery BCI using multivariate empirical mode decomposition.
IEEE Trans Neural Syst Rehabil Eng. 2013 Jan;21(1):10-22. doi: 10.1109/TNSRE.2012.2229296. Epub 2012 Nov 27.
5
Parallel convolutional neural network and empirical mode decomposition for high accuracy in motor imagery EEG signal classification.
PLoS One. 2025 Jan 16;20(1):e0311942. doi: 10.1371/journal.pone.0311942. eCollection 2025.
6
Adaptive-projection intrinsically transformed multivariate empirical mode decomposition in cooperative brain-computer interface applications.
Philos Trans A Math Phys Eng Sci. 2016 Apr 13;374(2065):20150199. doi: 10.1098/rsta.2015.0199.
8
Multi-class EEG classification of motor imagery signal by finding optimal time segments and features using SNR-based mutual information.
Australas Phys Eng Sci Med. 2018 Dec;41(4):957-972. doi: 10.1007/s13246-018-0691-2. Epub 2018 Oct 18.
10
Feature selection using regularized neighbourhood component analysis to enhance the classification performance of motor imagery signals.
Comput Biol Med. 2019 Apr;107:118-126. doi: 10.1016/j.compbiomed.2019.02.009. Epub 2019 Feb 19.

引用本文的文献

1
[Research progress in electroencephalogram-based brain age prediction].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2025 Aug 25;42(4):832-840. doi: 10.7507/1001-5515.202503043.

本文引用的文献

1
Parameterizing neural power spectra into periodic and aperiodic components.
Nat Neurosci. 2020 Dec;23(12):1655-1665. doi: 10.1038/s41593-020-00744-x. Epub 2020 Nov 23.
2
Deep learning for electroencephalogram (EEG) classification tasks: a review.
J Neural Eng. 2019 Jun;16(3):031001. doi: 10.1088/1741-2552/ab0ab5. Epub 2019 Feb 26.
3
EEG Classification of Motor Imagery Using a Novel Deep Learning Framework.
Sensors (Basel). 2019 Jan 29;19(3):551. doi: 10.3390/s19030551.
4
LSTM-Based EEG Classification in Motor Imagery Tasks.
IEEE Trans Neural Syst Rehabil Eng. 2018 Nov;26(11):2086-2095. doi: 10.1109/TNSRE.2018.2876129. Epub 2018 Oct 18.
5
EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces.
J Neural Eng. 2018 Oct;15(5):056013. doi: 10.1088/1741-2552/aace8c. Epub 2018 Jun 22.
6
CSP-TSM: Optimizing the performance of Riemannian tangent space mapping using common spatial pattern for MI-BCI.
Comput Biol Med. 2017 Dec 1;91:231-242. doi: 10.1016/j.compbiomed.2017.10.025. Epub 2017 Oct 24.
7
Deep learning with convolutional neural networks for EEG decoding and visualization.
Hum Brain Mapp. 2017 Nov;38(11):5391-5420. doi: 10.1002/hbm.23730. Epub 2017 Aug 7.
8
A novel deep learning approach for classification of EEG motor imagery signals.
J Neural Eng. 2017 Feb;14(1):016003. doi: 10.1088/1741-2560/14/1/016003. Epub 2016 Nov 30.
9
EEG gamma band oscillations differentiate the planning of spatially directed movements of the arm versus eye: multivariate empirical mode decomposition analysis.
IEEE Trans Neural Syst Rehabil Eng. 2014 Sep;22(5):1083-96. doi: 10.1109/TNSRE.2014.2332450. Epub 2014 Jun 30.
10
Brain-computer interfaces using sensorimotor rhythms: current state and future perspectives.
IEEE Trans Biomed Eng. 2014 May;61(5):1425-35. doi: 10.1109/TBME.2014.2312397.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验