Department of System Cybernetics, Graduate School of Engineering, Hiroshima University, Kagamiyama, Higashihiroshima, Japan.
Chem Senses. 2011 Jun;36(5):413-24. doi: 10.1093/chemse/bjq147. Epub 2011 Feb 22.
This paper proposes a neural network model for prediction of olfactory glomerular activity aimed at future application to the evaluation of odor qualities. The model's input is the structure of an odorant molecule expressed as a labeled graph, and it employs the graph kernel method to quantify structural similarities between odorants and the function of olfactory receptor neurons. An artificial neural network then converts odorant molecules into glomerular activity expressed in Gaussian mixture functions. The authors also propose a learning algorithm that allows adjustment of the parameters included in the model using a learning data set composed of pairs of odorants and measured glomerular activity patterns. We observed that the defined similarity between odorant structure has correlation of 0.3-0.9 with that of glomerular activity. Glomerular activity prediction simulation showed a certain level of prediction ability where the predicted glomerular activity patterns also correlate the measured ones with middle to high correlation in average for data sets containing 363 odorants.
本文提出了一种用于预测嗅球活动的神经网络模型,旨在未来用于评估气味质量。该模型的输入是气味分子的结构,用标记图表示,采用图核方法来量化气味分子与嗅球神经元功能之间的结构相似性。然后,一个人工神经网络将气味分子转化为用高斯混合函数表示的嗅球活动。作者还提出了一种学习算法,允许使用由气味对和测量的嗅球活动模式组成的学习数据集来调整模型中包含的参数。我们观察到,气味结构之间定义的相似性与嗅球活动之间的相关性为 0.3-0.9。嗅球活动预测模拟显示出一定的预测能力,对于包含 363 种气味的数据集,预测的嗅球活动模式与测量的嗅球活动模式之间具有中等至高的相关性。