Suppr超能文献

一种基于命中图的统计方法,用于预测孤儿嗅觉受体的最佳配体:天然关键气味剂与“开锁器”。

A hit map-based statistical method to predict best ligands for orphan olfactory receptors: natural key odorants versus "lock picks".

作者信息

Krautwurst Dietmar, Kotthoff Matthias

机构信息

German Research Center for Food Chemistry, Leibniz Institute, Freising, Germany.

出版信息

Methods Mol Biol. 2013;1003:85-97. doi: 10.1007/978-1-62703-377-0_6.

Abstract

Smell is a multidimensional chemical sense. It creates a perception of our odorous environment by integrating the information of a plethora of volatile chemicals with other sensory inputs, emotions and memories. We are almost always exposed to odorant mixtures, not just single chemicals. Olfactory processing of complex odorant mixtures, such as coffee or wine, first is decoded at the site of perception by the hundreds of different olfactory receptor types, each residing in the cilia of their olfactory sensory neurons in the nose. Often, only a few odorants from many are essential to determine complex olfactory perception. But merely using the chemical structure of odorants is insufficient to identify and predict characteristic odor qualities and low odor thresholds. An understanding of odorant coding critically depends on knowledge about the interaction of key odorants of biologically relevant odor bouquets with their best cognate receptors. Here, we describe a hit map-based method of correlating the information content of all bioassay-tested odorants with their cognate odorant-receptor frequency in four phylogenetic subsets of human olfactory/chemosensory receptors.

摘要

嗅觉是一种多维度的化学感觉。它通过将大量挥发性化学物质的信息与其他感官输入、情感和记忆相结合,营造出对我们有气味环境的感知。我们几乎总是接触到气味混合物,而不仅仅是单一化学物质。诸如咖啡或葡萄酒等复杂气味混合物的嗅觉处理首先在感知部位由数百种不同类型的嗅觉受体进行解码,每种受体都存在于鼻子中嗅觉感觉神经元的纤毛上。通常,众多气味中只有少数几种对于确定复杂的嗅觉感知至关重要。但是仅仅利用气味物质的化学结构不足以识别和预测特征性气味质量和低气味阈值。对气味编码的理解关键取决于对具有生物学相关性的气味组合中关键气味物质与其最佳同源受体相互作用的了解。在此,我们描述了一种基于命中图的方法,该方法将所有经过生物测定测试的气味物质的信息内容与其在人类嗅觉/化学感觉受体的四个系统发育亚组中的同源气味物质-受体频率相关联。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验