Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
Br J Radiol. 2012 Jun;85(1014):e153-61. doi: 10.1259/bjr/51461617. Epub 2011 Feb 22.
To investigate the feasibility of converting a computer-aided detection (CAD) scheme for digitised screen-film mammograms to full-field digital mammograms (FFDMs) and assessing CAD performance on a large database.
The database included 6478 FFDM images acquired on 1120 females, with 525 cancer cases and 595 negative cases. The database was divided into five case groups: (1) cancer detected during screening, (2) interval cancers, (3) "high-risk" recommended for surgical excision, (4) recalled but negative and (5) negative (not recalled). A previously developed CAD scheme for masses depicted on digitised images was converted and re-optimised for FFDM images while keeping the same image-processing structure. CAD performance was analysed on the entire database.
The case-based sensitivity was 75.6% (397/525) for the current mammograms and 40.8% (42/103) for the prior mammograms deemed negative during clinical interpretation but "visible" during retrospective review. The region-based sensitivity was 58.1% (618/1064) for the current mammograms and 28.4% (57/201) for the prior mammograms. The CAD scheme marked 55.7% (221/397) and 35.7% (15/42) of the masses on both views of the current and the prior examinations, respectively. The overall CAD-cued false-positive rate was 0.32 per image, ranging from 0.29 to 0.51 for the five case groups.
This study indicated that (1) digitised image-based CAD can be converted for FFDMs while performing at a comparable, or better, level; (2) CAD detects a substantial fraction of cancers depicted on prior examinations, albeit most having been marked only on one view; and (3) CAD tends to mark more false-positive results on "difficult" negative cases that are more visually difficult for radiologists to interpret.
研究将计算机辅助检测(CAD)方案从数字化屏-片乳腺摄影转换为全数字化乳腺摄影(FFDM)的可行性,并在大型数据库上评估 CAD 的性能。
该数据库包括 1120 名女性的 6478 张 FFDM 图像,其中 525 例为癌症病例,595 例为阴性病例。该数据库分为五组病例:(1)筛查时发现的癌症,(2)间期癌,(3)“高危”建议手术切除,(4)召回但阴性,(5)阴性(未召回)。之前开发的用于描述数字化图像中肿块的 CAD 方案已转换并针对 FFDM 图像进行了重新优化,同时保持相同的图像处理结构。在整个数据库上分析 CAD 的性能。
当前乳腺 X 线摄影的病例为基础的敏感性为 75.6%(397/525),而在临床解释期间被认为是阴性但在回顾性审查期间“可见”的先前乳腺 X 线摄影的阴性病例为基础的敏感性为 40.8%(42/103)。当前乳腺 X 线摄影的基于区域的敏感性为 58.1%(618/1064),而先前乳腺 X 线摄影的基于区域的敏感性为 28.4%(57/201)。CAD 方案标记了当前和先前检查的两个视图上的 55.7%(221/397)和 35.7%(15/42)的肿块。总体 CAD 提示的假阳性率为每幅图像 0.32,五个病例组的范围为 0.29 至 0.51。
本研究表明:(1)基于数字化图像的 CAD 可以转换为 FFDM,同时性能相当或更好;(2)CAD 检测到大量先前检查中显示的癌症,尽管大多数仅在一个视图上标记;(3)CAD 倾向于在更具视觉挑战性的困难阴性病例上标记更多的假阳性结果,这些病例对放射科医生的解释更具挑战性。