Suppr超能文献

全数字化乳腺钼靶图像中乳腺肿块的计算机辅助检测:性能评估。

Computer-aided detection of breast masses depicted on full-field digital mammograms: a performance assessment.

机构信息

Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA.

出版信息

Br J Radiol. 2012 Jun;85(1014):e153-61. doi: 10.1259/bjr/51461617. Epub 2011 Feb 22.

Abstract

OBJECTIVES

To investigate the feasibility of converting a computer-aided detection (CAD) scheme for digitised screen-film mammograms to full-field digital mammograms (FFDMs) and assessing CAD performance on a large database.

METHODS

The database included 6478 FFDM images acquired on 1120 females, with 525 cancer cases and 595 negative cases. The database was divided into five case groups: (1) cancer detected during screening, (2) interval cancers, (3) "high-risk" recommended for surgical excision, (4) recalled but negative and (5) negative (not recalled). A previously developed CAD scheme for masses depicted on digitised images was converted and re-optimised for FFDM images while keeping the same image-processing structure. CAD performance was analysed on the entire database.

RESULTS

The case-based sensitivity was 75.6% (397/525) for the current mammograms and 40.8% (42/103) for the prior mammograms deemed negative during clinical interpretation but "visible" during retrospective review. The region-based sensitivity was 58.1% (618/1064) for the current mammograms and 28.4% (57/201) for the prior mammograms. The CAD scheme marked 55.7% (221/397) and 35.7% (15/42) of the masses on both views of the current and the prior examinations, respectively. The overall CAD-cued false-positive rate was 0.32 per image, ranging from 0.29 to 0.51 for the five case groups.

CONCLUSION

This study indicated that (1) digitised image-based CAD can be converted for FFDMs while performing at a comparable, or better, level; (2) CAD detects a substantial fraction of cancers depicted on prior examinations, albeit most having been marked only on one view; and (3) CAD tends to mark more false-positive results on "difficult" negative cases that are more visually difficult for radiologists to interpret.

摘要

目的

研究将计算机辅助检测(CAD)方案从数字化屏-片乳腺摄影转换为全数字化乳腺摄影(FFDM)的可行性,并在大型数据库上评估 CAD 的性能。

方法

该数据库包括 1120 名女性的 6478 张 FFDM 图像,其中 525 例为癌症病例,595 例为阴性病例。该数据库分为五组病例:(1)筛查时发现的癌症,(2)间期癌,(3)“高危”建议手术切除,(4)召回但阴性,(5)阴性(未召回)。之前开发的用于描述数字化图像中肿块的 CAD 方案已转换并针对 FFDM 图像进行了重新优化,同时保持相同的图像处理结构。在整个数据库上分析 CAD 的性能。

结果

当前乳腺 X 线摄影的病例为基础的敏感性为 75.6%(397/525),而在临床解释期间被认为是阴性但在回顾性审查期间“可见”的先前乳腺 X 线摄影的阴性病例为基础的敏感性为 40.8%(42/103)。当前乳腺 X 线摄影的基于区域的敏感性为 58.1%(618/1064),而先前乳腺 X 线摄影的基于区域的敏感性为 28.4%(57/201)。CAD 方案标记了当前和先前检查的两个视图上的 55.7%(221/397)和 35.7%(15/42)的肿块。总体 CAD 提示的假阳性率为每幅图像 0.32,五个病例组的范围为 0.29 至 0.51。

结论

本研究表明:(1)基于数字化图像的 CAD 可以转换为 FFDM,同时性能相当或更好;(2)CAD 检测到大量先前检查中显示的癌症,尽管大多数仅在一个视图上标记;(3)CAD 倾向于在更具视觉挑战性的困难阴性病例上标记更多的假阳性结果,这些病例对放射科医生的解释更具挑战性。

相似文献

1
Computer-aided detection of breast masses depicted on full-field digital mammograms: a performance assessment.
Br J Radiol. 2012 Jun;85(1014):e153-61. doi: 10.1259/bjr/51461617. Epub 2011 Feb 22.
6
Multiview-based computer-aided detection scheme for breast masses.
Med Phys. 2006 Sep;33(9):3135-43. doi: 10.1118/1.2237476.
7
Computer-aided detection in mammography: an assessment of performance on current and prior images.
Acad Radiol. 2002 Nov;9(11):1245-50. doi: 10.1016/s1076-6332(03)80557-3.
8
Computer-aided diagnosis of masses with full-field digital mammography.
Acad Radiol. 2002 Jan;9(1):4-12. doi: 10.1016/s1076-6332(03)80290-8.
9
Matching breast masses depicted on different views a comparison of three methods.
Acad Radiol. 2009 Nov;16(11):1338-47. doi: 10.1016/j.acra.2009.05.005. Epub 2009 Jul 25.

引用本文的文献

2
Transformers Improve Breast Cancer Diagnosis from Unregistered Multi-View Mammograms.
Diagnostics (Basel). 2022 Jun 25;12(7):1549. doi: 10.3390/diagnostics12071549.
3
A Comparison of Computer-Aided Diagnosis Schemes Optimized Using Radiomics and Deep Transfer Learning Methods.
Bioengineering (Basel). 2022 Jun 15;9(6):256. doi: 10.3390/bioengineering9060256.
5
Applying a Random Projection Algorithm to Optimize Machine Learning Model for Breast Lesion Classification.
IEEE Trans Biomed Eng. 2021 Sep;68(9):2764-2775. doi: 10.1109/TBME.2021.3054248. Epub 2021 Aug 19.
6
Developing global image feature analysis models to predict cancer risk and prognosis.
Vis Comput Ind Biomed Art. 2019;2(1):17. doi: 10.1186/s42492-019-0026-5. Epub 2019 Nov 19.
7
Development and Assessment of a New Global Mammographic Image Feature Analysis Scheme to Predict Likelihood of Malignant Cases.
IEEE Trans Med Imaging. 2020 Apr;39(4):1235-1244. doi: 10.1109/TMI.2019.2946490. Epub 2019 Oct 9.
8
Applying a new quantitative image analysis scheme based on global mammographic features to assist diagnosis of breast cancer.
Comput Methods Programs Biomed. 2019 Oct;179:104995. doi: 10.1016/j.cmpb.2019.104995. Epub 2019 Jul 29.
9
Classification of Breast Masses Using a Computer-Aided Diagnosis Scheme of Contrast Enhanced Digital Mammograms.
Ann Biomed Eng. 2018 Sep;46(9):1419-1431. doi: 10.1007/s10439-018-2044-4. Epub 2018 May 10.

本文引用的文献

1
Performance of computer-aided detection applied to full-field digital mammography in detection of breast cancers.
Eur J Radiol. 2011 Mar;77(3):457-61. doi: 10.1016/j.ejrad.2009.08.024. Epub 2009 Oct 28.
2
Breast cancer screening results 5 years after introduction of digital mammography in a population-based screening program.
Radiology. 2009 Nov;253(2):353-8. doi: 10.1148/radiol.2532090225. Epub 2009 Jul 31.
3
Detection of breast cancer with full-field digital mammography and computer-aided detection.
AJR Am J Roentgenol. 2009 Feb;192(2):337-40. doi: 10.2214/AJR.07.3884.
4
Evaluation of computer-aided diagnosis on a large clinical full-field digital mammographic dataset.
Acad Radiol. 2008 Nov;15(11):1437-45. doi: 10.1016/j.acra.2008.05.004.
7
Influence of computer-aided detection on performance of screening mammography.
N Engl J Med. 2007 Apr 5;356(14):1399-409. doi: 10.1056/NEJMoa066099.
8
Prospective assessment of computer-aided detection in interpretation of screening mammography.
AJR Am J Roentgenol. 2006 Dec;187(6):1483-91. doi: 10.2214/AJR.05.1582.
9
Multiview-based computer-aided detection scheme for breast masses.
Med Phys. 2006 Sep;33(9):3135-43. doi: 10.1118/1.2237476.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验