School of Electrical & Computer Engineering, University of Oklahoma, Norman, OK 73019, USA.
Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA.
Tomography. 2022 Sep 28;8(5):2411-2425. doi: 10.3390/tomography8050200.
Background: The accurate classification between malignant and benign breast lesions detected on mammograms is a crucial but difficult challenge for reducing false-positive recall rates and improving the efficacy of breast cancer screening. Objective: This study aims to optimize a new deep transfer learning model by implementing a novel attention mechanism in order to improve the accuracy of breast lesion classification. Methods: ResNet50 is selected as the base model to develop a new deep transfer learning model. To enhance the accuracy of breast lesion classification, we propose adding a convolutional block attention module (CBAM) to the standard ResNet50 model and optimizing a new model for this task. We assembled a large dataset with 4280 mammograms depicting suspicious soft-tissue mass-type lesions. A region of interest (ROI) is extracted from each image based on lesion center. Among them, 2480 and 1800 ROIs depict verified benign and malignant lesions, respectively. The image dataset is randomly split into two subsets with a ratio of 9:1 five times to train and test two ResNet50 models with and without using CBAM. Results: Using the area under ROC curve (AUC) as an evaluation index, the new CBAM-based ResNet50 model yields AUC = 0.866 ± 0.015, which is significantly higher than that obtained by the standard ResNet50 model (AUC = 0.772 ± 0.008) (p < 0.01). Conclusion: This study demonstrates that although deep transfer learning technology attracted broad research interest in medical-imaging informatic fields, adding a new attention mechanism to optimize deep transfer learning models for specific application tasks can play an important role in further improving model performances.
在 mammograms 上检测到的恶性和良性乳腺病变的准确分类是降低假阳性召回率和提高乳腺癌筛查效果的关键但具有挑战性的任务。
本研究旨在通过实施新的注意力机制来优化新的深度迁移学习模型,以提高乳腺病变分类的准确性。
选择 ResNet50 作为基础模型来开发新的深度迁移学习模型。为了提高乳腺病变分类的准确性,我们提出在标准 ResNet50 模型中添加卷积块注意力模块(CBAM),并针对该任务优化新模型。我们组装了一个包含 4280 张乳腺疑似软组织肿块型病变图像的大型数据集。从每个图像中基于病变中心提取感兴趣区域(ROI)。其中,2480 个 ROI 描绘了经证实的良性病变,1800 个 ROI 描绘了经证实的恶性病变。将图像数据集随机分为 5 个子集,比例为 9:1,使用和不使用 CBAM 训练和测试两个 ResNet50 模型。
使用 ROC 曲线下面积(AUC)作为评价指标,新的基于 CBAM 的 ResNet50 模型的 AUC = 0.866 ± 0.015,明显高于标准 ResNet50 模型的 AUC = 0.772 ± 0.008(p < 0.01)。
本研究表明,尽管深度迁移学习技术在医学影像信息学领域引起了广泛的研究兴趣,但为特定应用任务优化深度迁移学习模型添加新的注意力机制可以在进一步提高模型性能方面发挥重要作用。