Iowa State University, Ames, IA 50011, USA.
Chemistry. 2011 Apr 11;17(16):4513-7. doi: 10.1002/chem.201003003. Epub 2011 Feb 23.
The important roles that nitric oxide (NO) plays in biological environments, and the need for precise and targeted delivery of NO for medicinal and other purposes have led to intense research in the area of metal nitrosyl complexes as thermal and photochemical sources of NO. Complexes with a good combination of chemical stability and high quantum yield for photochemical release of NO upon irradiation with visible light in aqueous solutions are rare. Here we report that a simple macrocyclic nitrosylrhodium complex L(2)(H(2)O)Rh(NO) (L(2)=Me(6)[14]aneN(4)) exhibits unique chemical and photochemical properties that make it an excellent photochemical precursor of NO. The complex is highly soluble in water, thermally stable, and resistant toward O(2). Irradiation in the 648 nm band generates NO and L(2)(H(2)O)Rh in aqueous solutions with a quantum yield of 1.00±0.07, the highest ever reported for a nitrosyl complex under any conditions. In the absence of O(2), the two fragments combine to regenerate L(2)(H(2)O)Rh- (NO), but in O(2)-containing solutions, L(2)(H(2)O)RhOO is formed as determined in spectral and kinetic measurements. The kinetics of the reaction of this superoxo complex with NO were measured by laser flash photolysis, k=(3.9±0.4)×10(7) M(-1) s(-1). Steady-state photolysis of L(2)(H(2)O)Rh(NO) under O(2) yielded L(2)(H(2)O)Rh(ONO(2)), a long-lived nitrato intermediate that can also be generated in a direct reaction between NO and genuine L(2)(H(2)O)RhOO. Thus, visible-light photolysis of the L(2)(H(2)O)Rh(NO)/O(2) system converts it to the L(2)(H(2)O)RhOO/NO combination.
一氧化氮(NO)在生物环境中起着重要作用,需要精确和靶向地输送 NO 用于医学和其他目的,这导致了金属亚硝酰配合物作为热和光化学 NO 源的研究非常活跃。具有良好的化学稳定性和在水溶液中用可见光辐照时高量子产率光化学释放 NO 的配合物很少。在这里,我们报告一种简单的大环亚硝酰铑配合物 L(2)(H(2)O)Rh(NO)(L(2)=Me(6)[14]aneN(4))具有独特的化学和光化学性质,使其成为 NO 的优秀光化学前体。该配合物在水中高度溶解,热稳定,对 O(2) 有抵抗力。在 648nm 波段辐照会在水溶液中生成 NO 和 L(2)(H(2)O)Rh,量子产率为 1.00±0.07,这是在任何条件下报道的亚硝酰配合物的最高值。在没有 O(2)的情况下,两个碎片结合生成 L(2)(H(2)O)Rh- (NO),但在含有 O(2)的溶液中,如光谱和动力学测量所确定的,形成 L(2)(H(2)O)RhOO。通过激光闪光光解测量了该超氧配合物与 NO 的反应动力学,k=(3.9±0.4)×10(7) M(-1) s(-1)。在 O(2)下用稳态光解 L(2)(H(2)O)Rh(NO)生成 L(2)(H(2)O)Rh(ONO(2)),这是一种长寿命的硝酰中间产物,也可以在 NO 和真正的 L(2)(H(2)O)RhOO之间的直接反应中生成。因此,用可见光光解 L(2)(H(2)O)Rh(NO)/O(2)系统将其转化为 L(2)(H(2)O)RhOO/NO 组合。