Iowa State University, Ames, Iowa 50011, USA.
Inorg Chem. 2012 Apr 16;51(8):4877-82. doi: 10.1021/ic300597n. Epub 2012 Apr 5.
Nitrous acid reacts with L(2)(H(2)O)Rh(2+) (L(2) = meso-hexamethylcyclam) in acidic aqueous solutions to generate a strongly absorbing intermediate Int-1 (λ(max) 400 nm, ε = 1200 M(-1) cm(-1)). The reaction follows a mixed second order rate law with k = (6.9 ± 0.3) × 10(4) M(-1) s(-1), independent of [H(+)]. The lack of acid dependence shows that Int-1 is a rhodium(II) complex of HNO(2), most reasonably assigned as L(2)(H(2)O)Rh(HNO(2))(2+). This species is analogous to the early iron and copper intermediates in the reduction of nitrite by nitrite reductases and by deoxyhemoglobin. In the presence of excess L(2)(H(2)O)Rh(2+), the lifetime of Int-1 is about 1 min. It decays to a 1:1 mixture of L(2)(H(2)O)RhNO(2+) and L(2)Rh(H(2)O)(2)(3+) with kinetics that are largely independent of the concentration of excess L(2)(H(2)O)Rh(2+) and of [H(+)] at [H(+)] < 0.03 M. At [H(+)] > 0.03 M, an acid-catalyzed pathway becomes effective, suggesting protonation and dehydration of Int-1 to generate L(2)(H(2)O)RhNO(3+) (Int-2) followed by rapid reduction of Int-2 by excess L(2)(H(2)O)Rh(2+). Int-2, which was generated and characterized independently, is an analog of the electrophilic intermediates in the mechanism of biological reduction of nitrite to (•)NO. Excess nitrite greatly reduces the lifetime of Int-1, which under such conditions decomposes on a millisecond time scale by nitrite-catalyzed disproportionation to yield L(2)(H(2)O)RhNO(2+) and L(2)Rh(III). This reaction provides additional support for the designation of Int-1 as a Rh(II) species. The complex reaction mechanism and the detection of Int-1 demonstrate the ability of inorganic complexes to perform the fundamental chemistry believed to take place in the biological reduction of HNO(2) to NO catalyzed by nitrite reductases or deoxyhemoglobin.
亚硝酸与 L(2)(H(2)O)Rh(2+)(L(2)=meso-六亚甲基环四胺)在酸性水溶液中反应生成强吸收中间体 Int-1(λ(max)400nm,ε=1200M(-1)cm(-1))。反应遵循混合二级反应定律,k=(6.9±0.3)×10(4)M(-1)s(-1),与[H(+)]无关。缺乏酸依赖性表明 Int-1 是 HNO(2)的 Rh(II)配合物,最合理的结构为 L(2)(H(2)O)Rh(HNO(2))(2+)。该物种类似于亚硝酸盐还原酶和脱氧血红蛋白还原亚硝酸盐的早期铁和铜中间体。在过量 L(2)(H(2)O)Rh(2+)存在下,Int-1 的寿命约为 1 分钟。它衰变为 L(2)(H(2)O)RhNO(2+)和 L(2)Rh(H(2)O)(2)(3+)的 1:1 混合物,动力学在很大程度上与过量 L(2)(H(2)O)Rh(2+)和[H(+)]的浓度无关,[H(+)]<0.03M。在[H(+)]>0.03M 时,酸催化途径变得有效,表明 Int-1 的质子化和脱水生成 L(2)(H(2)O)RhNO(3+)(Int-2),然后由过量的 L(2)(H(2)O)Rh(2+)快速还原 Int-2。Int-2 是独立生成和表征的,是生物还原亚硝酸盐为(•)NO 机制中亲电中间体的类似物。过量的亚硝酸盐大大缩短了 Int-1 的寿命,在这种情况下,Int-1 会通过亚硝酸盐催化的歧化反应在毫秒时间尺度上分解,生成 L(2)(H(2)O)RhNO(2+)和 L(2)Rh(III)。该反应为 Int-1 被指定为 Rh(II)物种提供了额外的支持。复杂的反应机制和 Int-1 的检测表明,无机配合物具有进行基本化学反应的能力,这些反应被认为发生在亚硝酸盐还原酶或脱氧血红蛋白催化的 HNO(2)还原为 NO 的生物还原过程中。