Ng J, Orav E J
Harvard School of Public Health, Department of Biostatistics, Boston, Massachusetts 02115.
Math Biosci. 1990 Sep;101(1):99-119. doi: 10.1016/0025-5564(90)90104-7.
The original Reed-Frost formulation of the chain binomial model is mathematically equivalent to a stochastic model allowing a Poisson number of effective contacts in a time interval. Their formulation cannot accommodate survey data that necessarily correspond to more complex distributions of partners or contacts, or to large populations where complete random mixing is unlikely. This paper generalizes the Reed-Frost model to accommodate these situations in both the one- and two-population settings. The extension to multiple populations is also outlined. Using the model to predict HIV incidence in San Francisco's homosexual population, we show that the total number of contacts over all partners is more important than the distribution of contacts among partners in determining the number of infected.
链二项式模型最初的里德 - 弗罗斯特公式在数学上等同于一个允许在时间间隔内有泊松数目的有效接触的随机模型。他们的公式无法处理必然对应于更复杂的性伴侣或接触分布的调查数据,也无法处理不太可能完全随机混合的大群体数据。本文将里德 - 弗罗斯特模型进行推广,以适应单群体和双群体环境中的这些情况。还概述了向多群体的扩展。通过使用该模型预测旧金山同性恋群体中的艾滋病毒发病率,我们表明,在确定感染人数时,所有性伴侣的接触总数比性伴侣之间的接触分布更为重要。