Suppr超能文献

觅食需求与避免竞争需求之间的冲突:两物种模型的持久性

Conflict between the need to forage and the need to avoid competition: persistence of two-species model.

作者信息

Takeuchi Y

机构信息

Department of Applied Mathematics, Faculty of Engineering, Schizuoka University, Hamamatsu, Japan.

出版信息

Math Biosci. 1990 May;99(2):181-94. doi: 10.1016/0025-5564(90)90003-h.

Abstract

We consider a model in which the need to forage and the need to avoid a competitor are in conflict. The model is composed of two Lotka-Volterra patches. The system has two competitors; one can diffuse between two patches, but the other is confined to one of the patches and cannot diffuse. It is proved that the system can be made persistent under appropriate diffusion conditions that ensure the instability of boundary equilibria, even if the competitive patch is not persistent without diffusion. Further it is shown that the system is globally stable for any diffusion rate if the competition between the two species is weak.

摘要

我们考虑一个模型,其中觅食需求和避开竞争者的需求相互冲突。该模型由两个洛特卡 - 沃尔泰拉斑块组成。系统中有两个竞争者;一个可以在两个斑块之间扩散,而另一个局限于其中一个斑块且不能扩散。结果表明,在适当的扩散条件下,即使没有扩散时竞争斑块是不稳定的,该系统也能保持持久性,前提是这些条件能确保边界平衡点的不稳定性。此外还表明,如果两个物种之间的竞争较弱,那么对于任何扩散率,系统都是全局稳定的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验