Takeuchi Y
Math Biosci. 1989 Jul;95(1):65-83. doi: 10.1016/0025-5564(89)90052-7.
We consider a system composed of two Lotka-Volterra patches connected by diffusion. Each patch has two competitors. Conditions for persistence of the system are given. It is proved that the system can be made persistent under appropriate diffusion coefficients ensuring the instability of boundary equilibria, even if each species is not persistent within each patch. The choice of the coefficients depends closely on the patch dynamics without diffusion.
我们考虑一个由两个通过扩散连接的Lotka-Volterra斑块组成的系统。每个斑块有两个竞争者。给出了系统持续存在的条件。证明了即使每个物种在每个斑块内都不能持续存在,在适当的扩散系数确保边界平衡点不稳定的情况下,该系统也可以实现持续存在。系数的选择紧密依赖于无扩散时斑块的动态。