Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom.
J Biol Chem. 2011 Apr 22;286(16):13815-26. doi: 10.1074/jbc.M111.219899. Epub 2011 Feb 23.
Intracellular pH (pH(i)), a major modulator of cell function, is regulated by acid/base transport across membranes. Excess intracellular H(+) ions (e.g. produced by respiration) are extruded by transporters such as Na(+)/H(+) exchange, or neutralized by HCO(3)(-) taken up by carriers such as Na(+)-HCO(3)(-) cotransport. Using fluorescence pH(i) imaging, we show that cancer-derived cell lines (colorectal HCT116 and HT29, breast MDA-MB-468, pancreatic MiaPaca2, and cervical HeLa) extrude acid by H(+) efflux and HCO(3)(-) influx, largely sensitive to dimethylamiloride and 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS), respectively. The magnitude of HCO(3)(-) influx was comparable among the cell lines and may represent a constitutive element of tumor pH(i) regulation. In contrast, H(+) efflux varied considerably (MDA-MB-468 > HCT116 > HT29 > MiaPaca2 > HeLa). When HCO(3)(-) flux was pharmacologically inhibited, acid extrusion in multicellular HT29 and HCT116 spheroids (∼10,000 cells) was highly non-uniform and produced low pH(i) at the core. With depth, acid extrusion became relatively more DIDS-sensitive because the low extracellular pH at the spheroid core inhibits H(+) flux more than HCO(3)(-) flux. HCO(3)(-) flux inhibition also decelerated HCT116 spheroid growth. In the absence of CO(2)/HCO(3)(-), acid extrusion by H(+) flux in HCT116 and MDA-MB-468 spheroids became highly non-uniform and inadequate at the core. This is because H(+) transporters require extracellular mobile pH buffers, such as CO(2)/HCO(3)(-), to overcome low H(+) ion mobility and chaperone H(+) ions away from cells. CO(2)/HCO(3)(-) exerts a dual effect: as substrate for membrane-bound HCO(3)(-) transporters and as a mobile buffer for facilitating extracellular diffusion of H(+) ions extruded from cells. These processes can be augmented by carbonic anhydrase activity. We conclude that CO(2)/HCO(3)(-) is important for maintaining uniformly alkaline pH(i) in small, non-vascularized tumor growths and may be important for cancer disease progression.
细胞内 pH 值(pH(i))是细胞功能的主要调节剂,由跨膜的酸碱转运来调节。过量的细胞内 H(+)离子(例如由呼吸产生的)通过转运体如 Na(+)/H(+)交换排出,或通过载体如 Na(+)-HCO(3)(-)共转运体摄取 HCO(3)(-)来中和。使用荧光 pH(i)成像,我们发现源自癌细胞系(结直肠 HCT116 和 HT29、乳腺 MDA-MB-468、胰腺 MiaPaca2 和宫颈 HeLa)通过 H(+)外排和 HCO(3)(-)内流来排出酸,这主要对二甲胺阿米洛利和 4,4'-二异硫氰酸基二苯乙烯-2,2'-二磺酸盐(DIDS)分别敏感。细胞系之间 HCO(3)(-)内流的幅度相当,可能代表肿瘤 pH(i)调节的组成部分。相比之下,H(+)外排变化很大(MDA-MB-468 > HCT116 > HT29 > MiaPaca2 > HeLa)。当 HCO(3)(-)通量被药理学抑制时,多细胞 HT29 和 HCT116 球体(约 10000 个细胞)中的酸外排非常不均匀,导致球体核心处 pH(i)降低。随着深度的增加,由于球体核心处的低细胞外 pH 对 H(+)通量的抑制比对 HCO(3)(-)通量的抑制更明显,因此 H(+)外排对 DIDS 的敏感性相对增加。HCO(3)(-)通量抑制也会减缓 HCT116 球体的生长。在没有 CO(2)/HCO(3)(-)的情况下,HCT116 和 MDA-MB-468 球体中 H(+)通量的酸外排变得非常不均匀,核心处不足。这是因为 H(+)转运体需要细胞外可移动的 pH 缓冲剂,如 CO(2)/HCO(3)(-),以克服低 H(+)离子迁移率并将 H(+)离子从细胞中带走。CO(2)/HCO(3)(-) 具有双重作用:作为膜结合 HCO(3)(-)转运体的底物和作为促进细胞外扩散的可移动缓冲剂从细胞中排出的 H(+)离子。这些过程可以通过碳酸酐酶活性来增强。我们得出结论,CO(2)/HCO(3)(-)对于维持小的、非血管化的肿瘤生长中的均匀碱性 pH(i)很重要,并且可能对癌症疾病进展很重要。