Suppr超能文献

有助于诊断成釉细胞瘤和角化囊性牙源性肿瘤的影像学特征:逻辑回归分析。

Imaging features contributing to the diagnosis of ameloblastomas and keratocystic odontogenic tumours: logistic regression analysis.

机构信息

Department of Oral and Maxillofacial Radiology, Aichi-Gakuin University School of Dentistry, 2-11 Suemori-dori, Chikusa-ku, Nagoya 464-8651, Japan.

出版信息

Dentomaxillofac Radiol. 2011 Mar;40(3):133-40. doi: 10.1259/dmfr/24726112.

Abstract

OBJECTIVE

The aim of this study was to clarify the characteristic imaging features that can be used to differentiate ameloblastomas from keratocystic odontogenic tumours and to examine the significant imaging features contributing to a correct diagnosis.

METHODS

60 observers (39 specialists in oral and maxillofacial radiology and 21 non-specialists) examined CT and/or panoramic images of 10 ameloblastomas and 10 keratocystic odontogenic tumours shown on a webpage and made diagnoses. Their correct answer ratios were then calculated. The imaging features of the tumours were evaluated and expressed as binary numbers or quantitative values. The imaging features that contributed to a correct diagnosis were elucidated using logistic regression analysis.

RESULTS

The mean correct answer ratio was 61.3% ± 17.2% for the diagnosis of ameloblastomas and keratocystic odontogenic tumours. CT images produced higher correct answer ratios for diagnosis of keratocystic odontogenic tumours by specialists. The significantly different imaging features between ameloblastomas and keratocystic odontogenic tumours were the degree of bone expansion and the presence of high-density areas. The significant imaging features contributing to a correct imaging diagnosis were the number of locules, the presence of high-density areas and the inclusion of impacted teeth.

CONCLUSION

The presence of high-density areas is the most useful feature in the differential diagnosis of ameloblastomas and keratocystic odontogenic tumours based on comparison of the imaging features of both tumours and examination of the diagnostic contributions of these features.

摘要

目的

本研究旨在阐明有助于鉴别造釉细胞瘤与角化囊肿的影像学特征,并探讨有助于正确诊断的重要影像学特征。

方法

60 名观察者(39 名口腔颌面放射学专家和 21 名非专家)在网页上检查了 10 例造釉细胞瘤和 10 例角化囊肿的 CT 和/或全景图像并做出诊断。然后计算他们的正确回答率。评估肿瘤的影像学特征,并表示为二进制数字或定量值。使用逻辑回归分析阐明有助于正确诊断的影像学特征。

结果

专家对造釉细胞瘤和角化囊肿的诊断的平均正确回答率为 61.3%±17.2%。CT 图像对专家诊断角化囊肿的正确率更高。造釉细胞瘤和角化囊肿之间具有显著差异的影像学特征是骨扩张程度和高密度区的存在。有助于正确影像学诊断的重要影像学特征是分房数、高密度区的存在和包含埋伏牙。

结论

与两种肿瘤的影像学特征比较,并检查这些特征的诊断贡献,高密度区的存在是鉴别诊断造釉细胞瘤和角化囊肿的最有用特征。

相似文献

2
Diagnostic contributions of imaging features to differentiate ameloblastomas from keratocystic odontogenic tumours: a commentary.
Dentomaxillofac Radiol. 2011 Sep;40(6):401; author reply 402. doi: 10.1259/dmfr/44698575.
3
Comparison of angiogenesis in keratocystic odontogenic tumours, dentigerous cysts and ameloblastomas.
Oral Dis. 2009 Sep;15(6):422-7. doi: 10.1111/j.1601-0825.2009.01566.x. Epub 2009 Apr 21.
7
Diagnostic value of MRI for odontogenic tumours.
Dentomaxillofac Radiol. 2013;42(5):20120265. doi: 10.1259/dmfr.20120265. Epub 2013 Mar 6.
8
Keratocystic odontogenic tumor arising at the mandibular ramus with an impacted tooth: a case report and mimic lesions.
Cranio. 2016 Jan;34(1):58-63. doi: 10.1179/2151090314Y.0000000035. Epub 2014 Nov 4.
9
CD1a-positive Langerhans cells and their relationship with E-cadherin in ameloblastomas and keratocystic odontogenic tumors.
J Oral Pathol Med. 2013 Jul;42(6):454-61. doi: 10.1111/jop.12033. Epub 2012 Dec 27.
10
Keratocystic odontogenic tumour: an experience in the Northeast of Brazil.
Srp Arh Celok Lek. 2011 May-Jun;139(5-6):291-7. doi: 10.2298/sarh1106291a.

引用本文的文献

1
Giant Unicystic Ameloblastoma in a Teenager of Azande Tribe: A Clinical Case Report.
Int Med Case Rep J. 2025 Aug 10;18:1003-1010. doi: 10.2147/IMCRJ.S538385. eCollection 2025.
6
Radiolucent Lesions of the Jaws: An Attempted Demonstration of the Use of Co-Word Analysis to List Main Similar Pathologies.
Int J Environ Res Public Health. 2022 Feb 9;19(4):1933. doi: 10.3390/ijerph19041933.
7
A Case Report on Acanthomatous Ameloblastoma of the Anterior Mandible with Brief Review on Advanced Imaging Diagnosis.
Indian J Radiol Imaging. 2021 Nov 30;31(4):1047-1052. doi: 10.1055/s-0041-1739382. eCollection 2021 Oct.
8
Deep learning based diagnosis for cysts and tumors of jaw with massive healthy samples.
Sci Rep. 2022 Feb 3;12(1):1855. doi: 10.1038/s41598-022-05913-5.
9
Computer tomographic differential diagnosis of ameloblastoma and odontogenic keratocyst: classification using a convolutional neural network.
Dentomaxillofac Radiol. 2021 Oct 1;50(7):20210002. doi: 10.1259/dmfr.20210002. Epub 2021 Apr 29.
10
Differential diagnosis of ameloblastoma and odontogenic keratocyst by machine learning of panoramic radiographs.
Int J Comput Assist Radiol Surg. 2021 Mar;16(3):415-422. doi: 10.1007/s11548-021-02309-0. Epub 2021 Feb 6.

本文引用的文献

1
Assessment of computerized tomography density patterns of ameloblastomas and keratocystic odontogenic tumors.
Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009 Oct;108(4):604-8. doi: 10.1016/j.tripleo.2009.03.008. Epub 2009 May 22.
3
The ameloblastoma: primary, curative surgical management.
J Oral Maxillofac Surg. 2006 Mar;64(3):484-94. doi: 10.1016/j.joms.2005.11.032.
4
Conservative treatment protocol of odontogenic keratocyst: a preliminary study.
J Oral Maxillofac Surg. 2006 Mar;64(3):379-83. doi: 10.1016/j.joms.2005.11.007.
5
8
Correlating imaging and histopathology of an odontogenic keratocyst in the nevoid basal cell carcinoma syndrome.
Dentomaxillofac Radiol. 1997 May;26(3):195-9. doi: 10.1038/sj.dmfr.4600240.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验