Suppr超能文献

基于分类的脑数字减影血管造影系列图像后处理算法的总结。

Classification-based summation of cerebral digital subtraction angiography series for image post-processing algorithms.

机构信息

University Erlangen-Nuremberg, Department of Neuroradiology, Erlangen, Germany.

出版信息

Phys Med Biol. 2011 Mar 21;56(6):1791-802. doi: 10.1088/0031-9155/56/6/017. Epub 2011 Feb 23.

Abstract

X-ray-based 2D digital subtraction angiography (DSA) plays a major role in the diagnosis, treatment planning and assessment of cerebrovascular disease, i.e. aneurysms, arteriovenous malformations and intracranial stenosis. DSA information is increasingly used for secondary image post-processing such as vessel segmentation, registration and comparison to hemodynamic calculation using computational fluid dynamics. Depending on the amount of injected contrast agent and the duration of injection, these DSA series may not exhibit one single DSA image showing the entire vessel tree. The interesting information for these algorithms, however, is usually depicted within a few images. If these images would be combined into one image the complexity of segmentation or registration methods using DSA series would drastically decrease. In this paper, we propose a novel method automatically splitting a DSA series into three parts, i.e. mask, arterial and parenchymal phase, to provide one final image showing all important vessels with less noise and moving artifacts. This final image covers all arterial phase images, either by image summation or by taking the minimum intensities. The phase classification is done by a two-step approach. The mask/arterial phase border is determined by a Perceptron-based method trained from a set of DSA series. The arterial/parenchymal phase border is specified by a threshold-based method. The evaluation of the proposed method is two-sided: (1) comparison between automatic and medical expert-based phase selection and (2) the quality of the final image is measured by gradient magnitudes inside the vessels and signal-to-noise (SNR) outside. Experimental results show a match between expert and automatic phase separation of 93%/50% and an average SNR increase of up to 182% compared to summing up the entire series.

摘要

基于 X 射线的二维数字减影血管造影(DSA)在诊断、治疗计划和评估脑血管疾病(如动脉瘤、动静脉畸形和颅内狭窄)方面发挥着重要作用。DSA 信息越来越多地用于血管分割、配准和与使用计算流体动力学的血流动力学计算的二次图像后处理。根据注入的造影剂的量和注射的持续时间,这些 DSA 系列可能不会显示一张显示整个血管树的单一 DSA 图像。然而,这些算法的有趣信息通常在几张图像中显示。如果将这些图像组合成一张图像,使用 DSA 系列的分割或配准方法的复杂性将大大降低。在本文中,我们提出了一种新的方法,将 DSA 系列自动分为三部分,即掩模、动脉期和实质期,以提供一张最终的图像,显示所有重要的血管,噪声和运动伪影更少。该最终图像通过图像求和或取最小强度来覆盖所有动脉期图像。通过两步法进行相位分类。通过基于感知器的方法确定掩模/动脉期边界,该方法是从一组 DSA 系列中训练得到的。通过基于阈值的方法确定动脉/实质期边界。该方法的评估是双向的:(1)自动和医学专家选择相位的比较,以及(2)通过测量血管内的梯度幅度和信号噪声比(SNR)来测量最终图像的质量。实验结果表明,专家和自动相位分离的匹配率为 93%/50%,与整个系列求和相比,平均 SNR 提高了 182%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验