Université de Provence, Aix-Marseille I, Laboratoire de Chimie Bactérienne, Marseille, France.
ISME J. 2011 Aug;5(8):1291-302. doi: 10.1038/ismej.2011.16. Epub 2011 Feb 24.
The extent of horizontal gene transfer (HGT) among marine pelagic prokaryotes and the role that HGT may have played in their adaptation to this particular environment remain open questions. This is partly due to the paucity of cultured species and genomic information for many widespread groups of marine bacteria and archaea. Molecular studies have revealed a large diversity and relative abundance of marine planktonic archaea, in particular of Thaumarchaeota (also known as group I Crenarchaeota) and Euryarchaeota of groups II and III, but only one species (the thaumarchaeote Candidatus Nitrosopumilus maritimus) has been isolated in pure culture so far. Therefore, metagenomics remains the most powerful approach to study these environmental groups. To investigate the impact of HGT in marine archaea, we carried out detailed phylogenetic analyses of all open reading frames of 21 archaeal 16S rRNA gene-containing fosmids and, to extend our analysis to other genomic regions, also of fosmid-end sequences of 12 774 fosmids from three different deep-sea locations (South Atlantic and Adriatic Sea at 1000 m depth, and Ionian Sea at 3000 m depth). We found high HGT rates in both marine planktonic Thaumarchaeota and Euryarchaeota, with remarkable converging values estimated from complete-fosmid and fosmid-end sequence analysis (25 and 21% of the genes, respectively). Most HGTs came from bacterial donors (mainly from Proteobacteria, Firmicutes and Chloroflexi) but also from other archaea and eukaryotes. Phylogenetic analyses showed that in most cases HGTs are shared by several representatives of the studied groups, implying that they are ancient and have been conserved over relatively long evolutionary periods. This, together with the functions carried out by these acquired genes (mostly related to energy metabolism and transport of metabolites across membranes), suggests that HGT has played an important role in the adaptation of these archaea to the cold and nutrient-depleted deep marine environment.
海洋浮游原核生物之间水平基因转移(HGT)的程度以及 HGT 可能在它们适应这种特殊环境中所起的作用仍然是悬而未决的问题。这在一定程度上是由于缺乏许多广泛分布的海洋细菌和古菌的培养物种和基因组信息。分子研究揭示了海洋浮游古菌的多样性和相对丰度很大,特别是 Thaumarchaeota(也称为 I 组 Crenarchaeota)和 Euryarchaeota 的 II 组和 III 组,但迄今为止仅分离出一种纯培养物(thaumarchaeote Candidatus Nitrosopumilus maritimus)。因此,宏基因组学仍然是研究这些环境群体的最有力方法。为了研究 HGT 对海洋古菌的影响,我们对 21 个含有古菌 16S rRNA 基因的 fosmid 的所有开放阅读框进行了详细的系统发育分析,并为了将我们的分析扩展到其他基因组区域,还对来自三个不同深海位置(南大西洋和亚得里亚海的 1000 m 深度,以及爱奥尼亚海的 3000 m 深度)的 12774 个 fosmid 的 fosmid 末端序列进行了分析。我们发现海洋浮游 Thaumarchaeota 和 Euryarchaeota 的 HGT 率都很高,从完整 fosmid 和 fosmid 末端序列分析中得出了惊人的收敛值(分别为 25%和 21%的基因)。大多数 HGT 来自细菌供体(主要来自 Proteobacteria、Firmicutes 和 Chloroflexi),但也来自其他古菌和真核生物。系统发育分析表明,在大多数情况下,HGT 是由研究群体的几个代表共享的,这意味着它们是古老的,并且在相对较长的进化时期内得到了保守。这一点,再加上这些获得的基因所执行的功能(主要与能量代谢和跨膜代谢物的运输有关),表明 HGT 在这些古菌适应寒冷和营养匮乏的深海环境方面发挥了重要作用。