Suppr超能文献

系统发生基因组学表明,氧气的可用性是古菌进化的驱动力。

Phylogenomics suggests oxygen availability as a driving force in Thaumarchaeota evolution.

机构信息

Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.

Shenzhen Research Institute, The Chinese University of Hong Kong, 518000, Shenzhen, China.

出版信息

ISME J. 2019 Sep;13(9):2150-2161. doi: 10.1038/s41396-019-0418-8. Epub 2019 Apr 25.

Abstract

Ammonia-oxidizing archaea (AOA) of the phylum Thaumarchaeota are widespread in marine and terrestrial habitats, playing a major role in the global nitrogen cycle. However, their evolutionary history remains unexplored, which limits our understanding of their adaptation mechanisms. Here, our comprehensive phylogenomic tree of Thaumarchaeota supports three sequential events: origin of AOA from terrestrial non-AOA ancestors, colonization of the shallow ocean, and expansion to the deep ocean. Careful molecular dating suggests that these events coincided with the Great Oxygenation Event around 2300 million years ago (Mya), and oxygenation of the shallow and deep ocean around 800 and 635-560 Mya, respectively. The first transition was likely enabled by the gain of an aerobic pathway for energy production by ammonia oxidation and biosynthetic pathways for cobalamin and biotin that act as cofactors in aerobic metabolism. The first transition was also accompanied by the loss of dissimilatory nitrate and sulfate reduction, loss of oxygen-sensitive pyruvate oxidoreductase, which reduces pyruvate to acetyl-CoA, and loss of the Wood-Ljungdahl pathway for anaerobic carbon fixation. The second transition involved gain of a K transporter and of the biosynthetic pathway for ectoine, which may function as an osmoprotectant. The third transition was accompanied by the loss of the uvr system for repairing ultraviolet light-induced DNA lesions. We conclude that oxygen availability drove the terrestrial origin of AOA and their expansion to the photic and dark oceans, and that the stressors encountered during these events were partially overcome by gene acquisitions from Euryarchaeota and Bacteria, among other sources.

摘要

氨氧化古菌(AOA)属于广古菌门,广泛存在于海洋和陆地生境中,在全球氮循环中起着重要作用。然而,它们的进化历史仍未被探索,这限制了我们对其适应机制的理解。在这里,我们全面的 Thaumarchaeota 系统发育树支持三个连续的事件:AOA 由陆地非 AOA 祖先起源,浅海的殖民化,以及深海的扩张。仔细的分子定年表明,这些事件与大约 2.3 亿年前的大氧化事件、以及 800 万年前和 635-560 万年前的浅海和深海的氧化相吻合。第一次过渡可能是通过氨氧化获得有氧途径来产生能量,以及获得钴胺素和生物素的生物合成途径,这些途径在有氧代谢中作为辅助因子。第一次过渡还伴随着异化硝酸盐和硫酸盐还原的丧失,减少丙酮酸氧化还原酶的敏感性,该酶将丙酮酸还原为乙酰辅酶 A,以及无氧固碳的 Wood-Ljungdahl 途径的丧失。第二次过渡涉及钾转运体的获得和 ectoine 的生物合成途径,ectoine 可能作为一种渗透保护剂发挥作用。第三次过渡伴随着修复紫外线诱导的 DNA 损伤的 uvr 系统的丧失。我们得出结论,氧气的可用性驱动了 AOA 的陆地起源及其向光和黑暗海洋的扩张,并且在这些事件中遇到的压力部分通过从广古菌和细菌等来源获得基因来克服。

相似文献

5
Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation.氨氧化古菌利用最节能的有氧途径固定 CO2。
Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):8239-44. doi: 10.1073/pnas.1402028111. Epub 2014 May 19.
6
Ammonia-oxidizing archaea in biological interactions.氨氧化古菌在生物相互作用中的作用。
J Microbiol. 2021 Mar;59(3):298-310. doi: 10.1007/s12275-021-1005-z. Epub 2021 Feb 23.

引用本文的文献

本文引用的文献

7
Horizontal gene transfer constrains the timing of methanogen evolution.水平基因转移限制了产甲烷菌进化的时间。
Nat Ecol Evol. 2018 May;2(5):897-903. doi: 10.1038/s41559-018-0513-7. Epub 2018 Apr 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验