Suppr超能文献

用于哮喘预测的递归噪声或(RNOR)规则的实证验证。

An Empirical Validation of Recursive Noisy OR (RNOR) Rule for Asthma Prediction.

作者信息

Anand Vibha, Downs Stephen M

机构信息

Children's Health Services Research, Indiana University School of Medicine.

出版信息

AMIA Annu Symp Proc. 2010 Nov 13;2010:16-20.

Abstract

In 2004, an extension of the Noisy-OR formalism termed the Recursive Noisy-OR (RNOR) rule was published for estimating complex probabilistic interactions in a Bayesian Network (BN). The RNOR rule presents an algorithm to construct a complete conditional probability distribution (CPD) of a node while allowing domain causal relationships over and above causal independence to be tractably captured in a semantically meaningful way. However, to the best of our knowledge, the accuracy of this rule has not been tested empirically. In this paper, we report the results of a study that compares the performance of a data-trained expert BN (empiric BN) with the reformulated BN, using the RNOR rule. The original empiric BN was trained with a large dataset from the Regenstrief Medical Record System (RMRS). Furthermore, we evaluate conditions in our dataset which render the RNOR rule inapplicable and discuss our use of Noisy-OR calculations in such situations. We call this approach "Adaptive Recursive Noisy-OR".

摘要

2004年,一种名为递归噪声或(RNOR)规则的噪声或形式主义扩展被发表,用于估计贝叶斯网络(BN)中的复杂概率交互作用。RNOR规则提出了一种算法,用于构建节点的完整条件概率分布(CPD),同时允许以语义有意义的方式以易于处理的方式捕捉因果独立性之上的领域因果关系。然而,据我们所知,该规则的准确性尚未经过实证检验。在本文中,我们报告了一项研究的结果,该研究使用RNOR规则比较了数据训练的专家BN(经验BN)与重新制定的BN的性能。原始的经验BN是使用来自雷根斯特里夫医疗记录系统(RMRS)的大型数据集进行训练的。此外,我们评估了数据集中使RNOR规则不适用的条件,并讨论了在此类情况下我们对噪声或计算的使用。我们将这种方法称为“自适应递归噪声或”。

相似文献

2
Recursive noisy OR--a rule for estimating complex probabilistic interactions.
IEEE Trans Syst Man Cybern B Cybern. 2004 Dec;34(6):2252-61. doi: 10.1109/tsmcb.2004.834424.
3
Probabilistic asthma case finding: a noisy or reformulation.
AMIA Annu Symp Proc. 2008 Nov 6;2008:6-10.
4
Evaluation of Bayesian classifiers in asthma exacerbation prediction after medication discontinuation.
BMC Res Notes. 2018 Jul 31;11(1):522. doi: 10.1186/s13104-018-3621-1.
5
Analysis for warning factors of type 2 diabetes mellitus complications with Markov blanket based on a Bayesian network model.
Comput Methods Programs Biomed. 2020 May;188:105302. doi: 10.1016/j.cmpb.2019.105302. Epub 2020 Jan 2.
6
Developing Bayesian networks from a dependency-layered ontology: A proof-of-concept in radiation oncology.
Med Phys. 2017 Aug;44(8):4350-4359. doi: 10.1002/mp.12340. Epub 2017 Jun 30.
8
Modelling treatment effects in a clinical Bayesian network using Boolean threshold functions.
Artif Intell Med. 2009 Jul;46(3):251-66. doi: 10.1016/j.artmed.2008.11.006. Epub 2008 Dec 25.
9
CBN: Constructing a clinical Bayesian network based on data from the electronic medical record.
J Biomed Inform. 2018 Dec;88:1-10. doi: 10.1016/j.jbi.2018.10.007. Epub 2018 Nov 3.

引用本文的文献

1
Desiderata for sharable computable biomedical knowledge for learning health systems.
Learn Health Syst. 2018 Aug 3;2(4):e10065. doi: 10.1002/lrh2.10065. eCollection 2018 Oct.
2
Relational machine learning for electronic health record-driven phenotyping.
J Biomed Inform. 2014 Dec;52:260-70. doi: 10.1016/j.jbi.2014.07.007. Epub 2014 Jul 15.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验