Suppr超能文献

贝叶斯网络集成作为预测放射性肺炎风险的多变量策略。

Bayesian network ensemble as a multivariate strategy to predict radiation pneumonitis risk.

作者信息

Lee Sangkyu, Ybarra Norma, Jeyaseelan Krishinima, Faria Sergio, Kopek Neil, Brisebois Pascale, Bradley Jeffrey D, Robinson Clifford, Seuntjens Jan, El Naqa Issam

机构信息

Medical Physics Unit, McGill University, Montreal, Quebec H3G1A4, Canada.

Department of Radiation Oncology, Montreal General Hospital, Montreal, H3G1A4, Canada.

出版信息

Med Phys. 2015 May;42(5):2421-30. doi: 10.1118/1.4915284.

Abstract

PURPOSE

Prediction of radiation pneumonitis (RP) has been shown to be challenging due to the involvement of a variety of factors including dose-volume metrics and radiosensitivity biomarkers. Some of these factors are highly correlated and might affect prediction results when combined. Bayesian network (BN) provides a probabilistic framework to represent variable dependencies in a directed acyclic graph. The aim of this study is to integrate the BN framework and a systems' biology approach to detect possible interactions among RP risk factors and exploit these relationships to enhance both the understanding and prediction of RP.

METHODS

The authors studied 54 nonsmall-cell lung cancer patients who received curative 3D-conformal radiotherapy. Nineteen RP events were observed (common toxicity criteria for adverse events grade 2 or higher). Serum concentration of the following four candidate biomarkers were measured at baseline and midtreatment: alpha-2-macroglobulin, angiotensin converting enzyme (ACE), transforming growth factor, interleukin-6. Dose-volumetric and clinical parameters were also included as covariates. Feature selection was performed using a Markov blanket approach based on the Koller-Sahami filter. The Markov chain Monte Carlo technique estimated the posterior distribution of BN graphs built from the observed data of the selected variables and causality constraints. RP probability was estimated using a limited number of high posterior graphs (ensemble) and was averaged for the final RP estimate using Bayes' rule. A resampling method based on bootstrapping was applied to model training and validation in order to control under- and overfit pitfalls.

RESULTS

RP prediction power of the BN ensemble approach reached its optimum at a size of 200. The optimized performance of the BN model recorded an area under the receiver operating characteristic curve (AUC) of 0.83, which was significantly higher than multivariate logistic regression (0.77), mean heart dose (0.69), and a pre-to-midtreatment change in ACE (0.66). When RP prediction was made only with pretreatment information, the AUC ranged from 0.76 to 0.81 depending on the ensemble size. Bootstrap validation of graph features in the ensemble quantified confidence of association between variables in the graphs where ten interactions were statistically significant.

CONCLUSIONS

The presented BN methodology provides the flexibility to model hierarchical interactions between RP covariates, which is applied to probabilistic inference on RP. The authors' preliminary results demonstrate that such framework combined with an ensemble method can possibly improve prediction of RP under real-life clinical circumstances such as missing data or treatment plan adaptation.

摘要

目的

由于辐射性肺炎(RP)的预测涉及多种因素,包括剂量 - 体积指标和放射敏感性生物标志物,已证明其具有挑战性。其中一些因素高度相关,组合在一起时可能会影响预测结果。贝叶斯网络(BN)提供了一个概率框架,用于在有向无环图中表示变量依赖性。本研究的目的是整合BN框架和系统生物学方法,以检测RP危险因素之间可能的相互作用,并利用这些关系来增强对RP的理解和预测。

方法

作者研究了54例接受根治性三维适形放疗的非小细胞肺癌患者。观察到19例RP事件(不良事件通用毒性标准为2级或更高)。在基线和治疗中期测量以下四种候选生物标志物的血清浓度:α-2-巨球蛋白、血管紧张素转换酶(ACE)、转化生长因子、白细胞介素-6。剂量 - 体积和临床参数也作为协变量纳入。使用基于Koller-Sahami滤波器的马尔可夫毯方法进行特征选择。马尔可夫链蒙特卡罗技术估计从所选变量的观测数据和因果关系约束构建的BN图的后验分布。使用有限数量的高后验图(集成)估计RP概率,并使用贝叶斯规则对最终的RP估计进行平均。应用基于自举的重采样方法进行模型训练和验证,以控制欠拟合和过拟合问题。

结果

BN集成方法的RP预测能力在大小为200时达到最佳。BN模型的优化性能记录的受试者操作特征曲线(AUC)下面积为0.83,显著高于多变量逻辑回归(0.77)、平均心脏剂量(0.69)和ACE治疗前至治疗中期的变化(0.66)。仅使用预处理信息进行RP预测时,AUC根据集成大小在0.76至0.81之间。对集成中图特征的自举验证量化了图中变量之间关联的置信度,其中有十种相互作用具有统计学意义。

结论

所提出的BN方法提供了对RP协变量之间分层相互作用进行建模的灵活性,该方法应用于RP的概率推断。作者的初步结果表明,这种框架与集成方法相结合,在诸如数据缺失或治疗计划调整等实际临床情况下,可能会改善RP的预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验