Department of Radiation Oncology, University of Washington Medical Center, Seattle, WA, USA.
Department of Pharmaceutical and Health Economics, University of Southern California, Los Angeles, CA, USA.
Med Phys. 2017 Aug;44(8):4350-4359. doi: 10.1002/mp.12340. Epub 2017 Jun 30.
Bayesian networks (BNs) are graphical representations of probabilistic knowledge that offer normative reasoning under uncertainty and are well suited for use in medical domains. Traditional knowledge-based network development of BN topology requires that modeling experts establish relevant dependency links between domain concepts by searching and translating published literature, querying domain experts, or applying machine learning algorithms on data. For initial development these methods are time-intensive and this cost hinders the growth of BN applications in medical decision making. Further, this approach fails to utilize knowledge representation in medical fields to automate network development. Our research alleviates the challenges surrounding BN modeling in radiation oncology by leveraging an ontology based hub and spoke system for BN construction.
We implement a hub and spoke system by developing (a) an ontology of knowledge in radiation oncology (the hub) which includes dependency semantics similar to BN relations and (b) a software tool that operates on ontological semantics using deductive reasoning to create BN topologies (the spokes). We demonstrate that network topologies built using the software are terminologically consistent and form networks that are topologically compatible with existing ones. We do this first by merging two different BN models for prostate cancer radiotherapy prediction which contain domain cross terms. We then use the logic to perform discovery of new causal chains between radiation oncology concepts.
From the radiation oncology (RO) ontology we successfully reconstructed a previously published prostate cancer radiotherapy Bayes net using up-to-date domain knowledge. Merging this model with another similar prostate cancer model in the RO domain produced a larger, highly interconnected model representing the expanded scope of knowledge available regarding prostate cancer therapy parameters, complications, and outcomes. The causal discovery resulted in an automatically-built causal network model of all ontologized radiotherapy concepts between a 'Mucositis' complication and anatomic tumor location.
The proposed model building approach lowers barriers to developing probabilistic models relevant to real-world clinical decision making, and offers a solution to the consistency and compatibility problems. Further, the knowledge representation in this work demonstrates potential for broader radiation oncology applications outside of Bayes nets.
贝叶斯网络(BNs)是概率知识的图形表示,可以在不确定条件下进行规范推理,非常适合用于医学领域。传统的基于知识的 BN 拓扑结构的网络开发需要建模专家通过搜索和翻译已发表的文献、查询领域专家或应用机器学习算法在数据上建立领域概念之间的相关依赖关系。对于初始开发,这些方法需要大量时间,这一成本阻碍了 BN 在医学决策中的应用的发展。此外,这种方法未能利用医学领域的知识表示来自动进行网络开发。我们通过利用基于本体的中心辐射系统来构建 BN,缓解了放射肿瘤学中 BN 建模所面临的挑战。
我们通过开发(a)放射肿瘤学知识本体(中心)来实现中心辐射系统,该本体包括类似于 BN 关系的依赖语义,以及(b)一种使用演绎推理来操作本体语义的软件工具来创建 BN 拓扑结构(辐条)。我们证明了使用该软件构建的网络拓扑结构在术语上是一致的,并形成与现有拓扑结构在拓扑上兼容的网络。我们首先通过合并两个用于前列腺癌放射治疗预测的不同 BN 模型来做到这一点,这两个模型都包含域交叉项。然后,我们使用该逻辑发现放射肿瘤学概念之间新的因果关系链。
从放射肿瘤学(RO)本体中,我们成功地使用最新的领域知识重建了以前发表的前列腺癌放射治疗贝叶斯网络。将这个模型与 RO 领域中另一个类似的前列腺癌模型合并,产生了一个更大、高度互联的模型,代表了有关前列腺癌治疗参数、并发症和结果的扩展知识范围。因果关系发现导致了一个自动构建的因果网络模型,其中包含了所有本体化的放射治疗概念之间的因果关系,涉及到“黏膜炎”并发症和解剖肿瘤位置。
所提出的模型构建方法降低了开发与实际临床决策相关的概率模型的障碍,并为一致性和兼容性问题提供了一种解决方案。此外,这项工作中的知识表示为贝叶斯网络之外的更广泛的放射肿瘤学应用提供了潜力。