Suppr超能文献

使用模拟退火算法提高医学图像数据库中的检索性能。

Improving retrieval performance in medical image databases using simulated annealing.

作者信息

Han Jing Ginger, Shyu Chi-Ren

机构信息

Informatics Institute;

出版信息

AMIA Annu Symp Proc. 2010 Nov 13;2010:276-80.

Abstract

In the area of content-based image retrieval, one of the prerequisites of successful retrieval is the extraction of an ample number of distinguishing features that sufficiently describe the important characteristics represented in the image content. Parameters underlying image segmentation and feature extraction need to be set appropriately in order to have this success in retrieval. We present here a parameter tuning method using simulated annealing to dynamically adjust values of important parameters used in customized image processing algorithms for the purpose of improving the performance of retrieval for high resolution CT lung images in computer-aided diagnosis. The most notable improvement using F(β) measure among five modules is from 0.56 to 0.81, which is a 44.64% increase (p=0.022). This method provides a way to improve retrieval performance in a large variety of applications in medical imaging informatics.

摘要

在基于内容的图像检索领域,成功检索的前提条件之一是提取大量能够充分描述图像内容中所呈现重要特征的显著特征。为了在检索中取得成功,需要适当地设置图像分割和特征提取所依据的参数。我们在此提出一种使用模拟退火的参数调整方法,以动态调整定制图像处理算法中使用的重要参数的值,目的是提高计算机辅助诊断中高分辨率CT肺部图像的检索性能。在五个模块中,使用F(β)度量最显著的改进是从0.56提高到0.81,提高了44.64%(p = 0.022)。该方法为在医学成像信息学的各种应用中提高检索性能提供了一种途径。

相似文献

6
Case retrieval in medical databases by fusing heterogeneous information.医学数据库中异构信息融合的病例检索。
IEEE Trans Med Imaging. 2011 Jan;30(1):108-18. doi: 10.1109/TMI.2010.2063711. Epub 2010 Aug 5.
7
Large-scale retrieval for medical image analytics: A comprehensive review.大规模医学图像分析检索:全面综述。
Med Image Anal. 2018 Jan;43:66-84. doi: 10.1016/j.media.2017.09.007. Epub 2017 Oct 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验