Suppr超能文献

IGF-1 和 HGF 的可生物降解聚氨酯支架的控释。

Controlled release of IGF-1 and HGF from a biodegradable polyurethane scaffold.

机构信息

Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.

出版信息

Pharm Res. 2011 Jun;28(6):1282-93. doi: 10.1007/s11095-011-0391-z. Epub 2011 Feb 23.

Abstract

PURPOSE

Biodegradable elastomers, which can possess favorable mechanical properties and degradation rates for soft tissue engineering applications, are more recently being explored as depots for biomolecule delivery. The objective of this study was to synthesize and process biodegradable, elastomeric poly(ester urethane)urea (PEUU) scaffolds and to characterize their ability to incorporate and release bioactive insulin-like growth factor-1 (IGF-1) and hepatocyte growth factor (HGF).

METHODS

Porous PEUU scaffolds made from either 5 or 8 wt% PEUU were prepared with direct growth-factor incorporation. Long-term in vitro IGF-1 release kinetics were investigated in saline or saline with 100 units/ml lipase to simulate in vivo degradation. Cellular assays were used to confirm released IGF-1 and HGF bioactivity.

RESULTS

IGF-1 release into saline occurred in a complex multi-phasic manner for up to 440 days. Scaffolds generated from 5 wt% PEUU delivered protein faster than 8 wt% scaffolds. Lipase-accelerated scaffold degradation led to delivery of >90% protein over 9 weeks for both polymer concentrations. IGF-1 and HGF bioactivity in the first 3 weeks was confirmed.

CONCLUSIONS

The capacity of a biodegradable elastomeric scaffold to provide long-term growth-factor delivery was demonstrated. Such a system might provide functional benefit in cardiovascular and other soft tissue engineering applications.

摘要

目的

可生物降解的弹性体具有用于软组织工程应用的有利机械性能和降解速率,最近作为生物分子递药的储库得到了更多的探索。本研究的目的是合成和加工可生物降解的弹性体聚(酯-氨酯)脲(PEUU)支架,并表征其包封和释放生物活性胰岛素样生长因子-1(IGF-1)和肝细胞生长因子(HGF)的能力。

方法

通过直接生长因子掺入制备由 5 或 8wt%PEUU 制成的多孔 PEUU 支架。在盐水中或模拟体内降解的含 100 单位/ml 脂肪酶的盐水中研究了长期 IGF-1 释放动力学。细胞测定用于确认释放的 IGF-1 和 HGF 的生物活性。

结果

IGF-1 释放到盐水中的过程在长达 440 天内呈现复杂的多相方式。5wt%PEUU 生成的支架比 8wt%支架更快地输送蛋白质。对于两种聚合物浓度,脂肪酶加速的支架降解在 9 周内导致超过 90%的蛋白质释放。在最初的 3 周内证实了 IGF-1 和 HGF 的生物活性。

结论

证明了可生物降解弹性体支架提供长期生长因子输送的能力。这样的系统可能在心血管和其他软组织工程应用中提供功能益处。

相似文献

1
Controlled release of IGF-1 and HGF from a biodegradable polyurethane scaffold.
Pharm Res. 2011 Jun;28(6):1282-93. doi: 10.1007/s11095-011-0391-z. Epub 2011 Feb 23.
2
Biodegradable elastomeric scaffolds with basic fibroblast growth factor release.
J Control Release. 2007 Jul 16;120(1-2):70-8. doi: 10.1016/j.jconrel.2007.04.002. Epub 2007 Apr 13.
4
Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications.
Biomaterials. 2005 Jun;26(18):3961-71. doi: 10.1016/j.biomaterials.2004.10.018.
5
Tailoring the degradation kinetics of poly(ester carbonate urethane)urea thermoplastic elastomers for tissue engineering scaffolds.
Biomaterials. 2010 May;31(15):4249-58. doi: 10.1016/j.biomaterials.2010.02.005. Epub 2010 Feb 25.
6
Biodegradable poly(ester urethane)urea elastomers with variable amino content for subsequent functionalization with phosphorylcholine.
Acta Biomater. 2014 Nov;10(11):4639-4649. doi: 10.1016/j.actbio.2014.08.008. Epub 2014 Aug 14.
9

引用本文的文献

1
Design of Hybrid Polymer Nanofiber/Collagen Patches Releasing IGF and HGF to Promote Cardiac Regeneration.
Pharmaceutics. 2022 Sep 2;14(9):1854. doi: 10.3390/pharmaceutics14091854.
3
Nitro-Oleic Acid (NO-OA) Release Enhances Regional Angiogenesis in a Rat Abdominal Wall Defect Model.
Tissue Eng Part A. 2018 Jun;24(11-12):889-904. doi: 10.1089/ten.TEA.2017.0349. Epub 2018 Feb 27.
4
Antifibrotic therapies to control cardiac fibrosis.
Biomater Res. 2016 May 25;20:13. doi: 10.1186/s40824-016-0060-8. eCollection 2016.
5
Tunable Keratin Hydrogels for Controlled Erosion and Growth Factor Delivery.
Biomacromolecules. 2016 Jan 11;17(1):225-36. doi: 10.1021/acs.biomac.5b01328. Epub 2015 Dec 14.
6
Biomimetic scaffolds for regeneration of volumetric muscle loss in skeletal muscle injuries.
Acta Biomater. 2015 Oct;25:2-15. doi: 10.1016/j.actbio.2015.07.038. Epub 2015 Jul 26.
7
Naturally derived and synthetic scaffolds for skeletal muscle reconstruction.
Adv Drug Deliv Rev. 2015 Apr;84:208-21. doi: 10.1016/j.addr.2014.08.011. Epub 2014 Aug 29.
8
Electrospun biodegradable elastic polyurethane scaffolds with dipyridamole release for small diameter vascular grafts.
Acta Biomater. 2014 Nov;10(11):4618-4628. doi: 10.1016/j.actbio.2014.07.031. Epub 2014 Aug 8.
9
Predicting in vivo responses to biomaterials via combined in vitro and in silico analysis.
Tissue Eng Part C Methods. 2015 Feb;21(2):148-59. doi: 10.1089/ten.TEC.2014.0167. Epub 2014 Aug 4.
10
Tunable delivery of siRNA from a biodegradable scaffold to promote angiogenesis in vivo.
Adv Mater. 2014 Jan;26(4):607-14, 506. doi: 10.1002/adma.201303520. Epub 2013 Dec 16.

本文引用的文献

2
Pericyte-based human tissue engineered vascular grafts.
Biomaterials. 2010 Nov;31(32):8235-44. doi: 10.1016/j.biomaterials.2010.07.034. Epub 2010 Aug 3.
3
Sustained release of vancomycin from polyurethane scaffolds inhibits infection of bone wounds in a rat femoral segmental defect model.
J Control Release. 2010 Aug 3;145(3):221-30. doi: 10.1016/j.jconrel.2010.04.002. Epub 2010 Apr 9.
4
Local delivery of tobramycin from injectable biodegradable polyurethane scaffolds.
J Biomater Sci Polym Ed. 2010;21(1):95-112. doi: 10.1163/156856209X410256.
5
Efficacy of HGF gene transfer for various nervous injuries and disorders.
Cent Nerv Syst Agents Med Chem. 2009 Dec;9(4):300-6. doi: 10.2174/187152409789630406.
7
Incorporation of ionic ligands accelerates drug release from LDI-glycerol polyurethanes.
Acta Biomater. 2010 Jan;6(1):144-53. doi: 10.1016/j.actbio.2009.06.013. Epub 2009 Jun 11.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验