Suppr超能文献

用于骨骼肌损伤中体积性肌肉损失再生的仿生支架

Biomimetic scaffolds for regeneration of volumetric muscle loss in skeletal muscle injuries.

作者信息

Grasman Jonathan M, Zayas Michelle J, Page Raymond L, Pins George D

机构信息

Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester, MA 01609, United States; Bioengineering Institute, Worcester Polytechnic Institute, Worcester, MA 01609, United States.

Biomedical Engineering Department, Worcester Polytechnic Institute, Worcester, MA 01609, United States.

出版信息

Acta Biomater. 2015 Oct;25:2-15. doi: 10.1016/j.actbio.2015.07.038. Epub 2015 Jul 26.

Abstract

UNLABELLED

Skeletal muscle injuries typically result from traumatic incidents such as combat injuries where soft-tissue extremity injuries are present in one of four cases. Further, about 4.5 million reconstructive surgical procedures are performed annually as a result of car accidents, cancer ablation, or cosmetic procedures. These combat- and trauma-induced skeletal muscle injuries are characterized by volumetric muscle loss (VML), which significantly reduces the functionality of the injured muscle. While skeletal muscle has an innate repair mechanism, it is unable to compensate for VML injuries because large amounts of tissue including connective tissue and basement membrane are removed or destroyed. This results in a significant need to develop off-the-shelf biomimetic scaffolds to direct skeletal muscle regeneration. Here, the structure and organization of native skeletal muscle tissue is described in order to reveal clear design parameters that are necessary for scaffolds to mimic in order to successfully regenerate muscular tissue. We review the literature with respect to the materials and methodologies used to develop scaffolds for skeletal muscle tissue regeneration as well as the limitations of these materials. We further discuss the variety of cell sources and different injury models to provide some context for the multiple approaches used to evaluate these scaffold materials. Recent findings are highlighted to address the state of the field and directions are outlined for future strategies, both in scaffold design and in the use of different injury models to evaluate these materials, for regenerating functional skeletal muscle.

STATEMENT OF SIGNIFICANCE

Volumetric muscle loss (VML) injuries result from traumatic incidents such as those presented from combat missions, where soft-tissue extremity injuries are represented in one of four cases. These injuries remove or destroy large amounts of skeletal muscle including the basement membrane and connective tissue, removing the structural, mechanical, and biochemical cues that usually direct its repair. This results in a significant need to develop off-the-shelf biomimetic scaffolds to direct skeletal muscle regeneration. In this review, we examine current strategies for the development of scaffold materials designed for skeletal muscle regeneration, highlighting advances and limitations associated with these methodologies. Finally, we identify future approaches to enhance skeletal muscle regeneration.

摘要

未标注

骨骼肌损伤通常由创伤性事件引起,如战斗损伤,在四肢软组织损伤中,每四例就有一例是这种情况。此外,每年因车祸、癌症切除或美容手术而进行约450万例重建手术。这些由战斗和创伤引起的骨骼肌损伤的特征是肌肉体积损失(VML),这显著降低了受伤肌肉的功能。虽然骨骼肌有内在的修复机制,但它无法补偿VML损伤,因为包括结缔组织和基底膜在内的大量组织被移除或破坏。这就迫切需要开发现成的仿生支架来引导骨骼肌再生。在这里,描述了天然骨骼肌组织的结构和组织,以揭示支架为成功再生肌肉组织而需模仿的明确设计参数。我们回顾了用于开发骨骼肌组织再生支架的材料和方法的相关文献以及这些材料的局限性。我们进一步讨论了多种细胞来源和不同的损伤模型,以便为评估这些支架材料所采用的多种方法提供一些背景信息。突出了近期的研究成果以阐述该领域的现状,并概述了未来的策略方向,包括支架设计以及使用不同损伤模型评估这些材料以再生功能性骨骼肌的策略。

重要性声明

肌肉体积损失(VML)损伤由创伤性事件引起,如战斗任务中的损伤,在四肢软组织损伤中,每四例就有一例是这种情况。这些损伤会移除或破坏大量骨骼肌,包括基底膜和结缔组织,消除了通常指导其修复的结构、机械和生化信号。这就迫切需要开发现成的仿生支架来引导骨骼肌再生。在本综述中,我们研究了用于骨骼肌再生的支架材料开发的当前策略,并突出了与这些方法相关的进展和局限性。最后,我们确定了增强骨骼肌再生的未来方法。

相似文献

1
Biomimetic scaffolds for regeneration of volumetric muscle loss in skeletal muscle injuries.
Acta Biomater. 2015 Oct;25:2-15. doi: 10.1016/j.actbio.2015.07.038. Epub 2015 Jul 26.
2
Engineering Biomimetic Materials for Skeletal Muscle Repair and Regeneration.
Adv Healthc Mater. 2019 Mar;8(5):e1801168. doi: 10.1002/adhm.201801168. Epub 2019 Feb 6.
3
An acellular biologic scaffold does not regenerate appreciable de novo muscle tissue in rat models of volumetric muscle loss injury.
Biomaterials. 2015 Oct;67:393-407. doi: 10.1016/j.biomaterials.2015.07.040. Epub 2015 Jul 23.
4
Skeletal Muscle Tissue Engineering: Biomaterials-Based Strategies for the Treatment of Volumetric Muscle Loss.
Bioengineering (Basel). 2020 Jul 31;7(3):85. doi: 10.3390/bioengineering7030085.
5
Cells, scaffolds, and bioactive factors: Engineering strategies for improving regeneration following volumetric muscle loss.
Biomaterials. 2021 Nov;278:121173. doi: 10.1016/j.biomaterials.2021.121173. Epub 2021 Oct 1.
6
Long-Term Evaluation of Functional Outcomes Following Rat Volumetric Muscle Loss Injury and Repair.
Tissue Eng Part A. 2020 Feb;26(3-4):140-156. doi: 10.1089/ten.TEA.2019.0126. Epub 2020 Jan 23.
7
Biomimetic sponges improve muscle structure and function following volumetric muscle loss.
J Biomed Mater Res A. 2021 Nov;109(11):2280-2293. doi: 10.1002/jbm.a.37212. Epub 2021 May 7.
9
Immunomodulation and Biomaterials: Key Players to Repair Volumetric Muscle Loss.
Cells. 2021 Aug 7;10(8):2016. doi: 10.3390/cells10082016.

引用本文的文献

1
Bifunctional adECM bioscaffold with STIM1-ASCs and IGF-2 promotes functional masseter VML repair via myogenesis and fibrosis suppression.
Bioact Mater. 2025 Aug 29;54:466-491. doi: 10.1016/j.bioactmat.2025.08.019. eCollection 2025 Dec.
2
A novel protocol for the direct isolation of a highly pure and regenerative population of satellite stem cells.
Proc Natl Acad Sci U S A. 2025 Jun 24;122(25):e2426081122. doi: 10.1073/pnas.2426081122. Epub 2025 Jun 18.
3
Extracellular matrix in skeletal muscle injury and atrophy: mechanisms and therapeutic implications.
J Orthop Translat. 2025 May 16;52:404-418. doi: 10.1016/j.jot.2025.03.004. eCollection 2025 May.
4
Bioelectric and physicochemical foundations of bioelectronics in tissue regeneration.
Biomaterials. 2025 Nov;322:123385. doi: 10.1016/j.biomaterials.2025.123385. Epub 2025 May 2.
5
Extracellular Matrix-Mediated Crosslinking of Adhesive Hyaluronic Acid Patch for Treating Volumetric Muscle Injury.
Adv Healthc Mater. 2025 May;14(14):e2403747. doi: 10.1002/adhm.202403747. Epub 2025 Apr 24.
9
Liposome-Enabled Nanomaterials for Muscle Regeneration.
Small Methods. 2025 Feb 18:e2402154. doi: 10.1002/smtd.202402154.
10
Extrusion-Based Printing of Myoblast-Loaded Fibrin Microthreads to Induce Myogenesis.
J Funct Biomater. 2025 Jan 10;16(1):21. doi: 10.3390/jfb16010021.

本文引用的文献

3
Development of a biological scaffold engineered using the extracellular matrix secreted by skeletal muscle cells.
Biomaterials. 2015 May;49:9-17. doi: 10.1016/j.biomaterials.2015.01.027. Epub 2015 Feb 11.
4
Exploiting the inflammatory response on biomaterials research and development.
J Mater Sci Mater Med. 2015 Mar;26(3):121. doi: 10.1007/s10856-015-5423-5. Epub 2015 Feb 18.
6
Effects of nitric oxide on notexin-induced muscle inflammatory responses.
Int J Biol Sci. 2015 Jan 5;11(2):156-67. doi: 10.7150/ijbs.10283. eCollection 2015.
7
Naturally derived and synthetic scaffolds for skeletal muscle reconstruction.
Adv Drug Deliv Rev. 2015 Apr;84:208-21. doi: 10.1016/j.addr.2014.08.011. Epub 2014 Aug 29.
9
Static axial stretching enhances the mechanical properties and cellular responses of fibrin microthreads.
Acta Biomater. 2014 Oct;10(10):4367-76. doi: 10.1016/j.actbio.2014.06.021. Epub 2014 Jun 20.
10
In situ regeneration of skeletal muscle tissue through host cell recruitment.
Acta Biomater. 2014 Oct;10(10):4332-9. doi: 10.1016/j.actbio.2014.06.022. Epub 2014 Jun 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验