Institute of Meteorology, University of Applied life Sciences and Natural Resources, Vienna, Austria.
Int J Biometeorol. 2012 May;56(3):537-55. doi: 10.1007/s00484-011-0416-7. Epub 2011 Feb 23.
In the present study, we investigate the determination accuracy of the Universal Thermal Climate Index (UTCI). We study especially the UTCI uncertainties due to uncertainties in radiation fluxes, whose impacts on UTCI are evaluated via the mean radiant temperature (Tmrt). We assume "normal conditions", which means that usual meteorological information and data are available but no special additional measurements. First, the uncertainty arising only from the measurement uncertainties of the meteorological data is determined. Here, simulations show that uncertainties between 0.4 and 2 K due to the uncertainty of just one of the meteorological input parameters may be expected. We then analyse the determination accuracy when not all radiation data are available and modelling of the missing data is required. Since radiative transfer models require a lot of information that is usually not available, we concentrate only on the determination accuracy achievable with empirical models. The simulations show that uncertainties in the calculation of the diffuse irradiance may lead to Tmrt uncertainties of up to ±2.9 K. If long-wave radiation is missing, we may expect an uncertainty of ±2 K. If modelling of diffuse radiation and of longwave radiation is used for the calculation of Tmrt, we may then expect a determination uncertainty of ±3 K. If all radiative fluxes are modelled based on synoptic observation, the uncertainty in Tmrt is ±5.9 K. Because Tmrt is only one of the four input data required in the calculation of UTCI, the uncertainty in UTCI due to the uncertainty in radiation fluxes is less than ±2 K. The UTCI uncertainties due to uncertainties of the four meteorological input values are not larger than the 6 K reference intervals of the UTCI scale, which means that UTCI may only be wrong by one UTCI scale. This uncertainty may, however, be critical at the two temperature extremes, i.e. under extreme hot or extreme cold conditions.
在本研究中,我们研究了通用热气候指数(UTCI)的确定精度。我们特别研究了由于辐射通量不确定性引起的 UTCI 不确定性,其对 UTCI 的影响通过平均辐射温度(Tmrt)进行评估。我们假设“正常条件”,这意味着通常可以获得气象信息和数据,但没有特殊的附加测量。首先,确定仅由气象数据测量不确定性引起的不确定性。这里的模拟表明,由于仅一个气象输入参数的不确定性,可能会出现 0.4 到 2 K 的不确定性。然后,我们分析了当并非所有辐射数据都可用且需要对缺失数据进行建模时的确定精度。由于辐射传输模型需要通常不可用的大量信息,因此我们仅集中于可以用经验模型实现的确定精度。模拟表明,漫射辐射计算中的不确定性可能导致 Tmrt 不确定性高达±2.9 K。如果长波辐射缺失,则我们可能预期不确定性为±2 K。如果使用经验模型对漫射辐射和长波辐射进行建模以计算 Tmrt,则我们可能会预期±3 K 的确定不确定性。如果所有辐射通量都基于天气观测进行建模,则 Tmrt 的不确定性为±5.9 K。由于 Tmrt 仅是计算 UTCI 所需的四个输入数据之一,因此辐射通量不确定性引起的 UTCI 不确定性小于±2 K。由于四个气象输入值的不确定性引起的 UTCI 不确定性不大于 UTCI 刻度的 6 K 参考间隔,这意味着 UTCI 可能仅错误一个 UTCI 刻度。但是,这种不确定性在两个温度极端情况下可能至关重要,即极端炎热或极冷条件下。