Institut für Umweltforschung (INFU) der Fakultät Chemie, Lehrstuhl für Umweltchemie und Analytische Chemie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, D-44221 Dortmund, Germany.
J Nat Prod. 2011 Apr 25;74(4):764-75. doi: 10.1021/np1008398. Epub 2011 Feb 24.
Fungal endophytes inhabit healthy tissues of all terrestrial plant taxa studied and occasionally produce host-specific compounds. We recently isolated an endophytic fungus, Fusarium solani, from Camptotheca acuminata, capable of biosynthesizing camptothecin (CPT, 1), but this capability substantially decreased on repeated subculturing. The endophyte with an impaired 1 biosynthetic capability was artificially inoculated into the living host plants and then recovered after colonization. Although the host-endophyte interaction could be reconstituted, biosynthesis of 1 could not be restored. Using a homology-based approach and high-precision isotope-ratio mass spectrometry (HP-IRMS), a cross-species biosynthetic pathway is proposed where the endophyte utilizes indigenous G10H (geraniol 10-hydroxylase), SLS (secologanin synthase), and TDC (tryptophan decarboxylase) to biosynthesize precursors of 1. However, the endophyte requires host STR (strictosidine synthase) in order to condense the nitrogen-containing moiety (tryptamine, 2) with the carbon-containing moiety (secologanin, 3) to form strictosidine (4) and complete the biosynthesis of 1. Biosynthetic genes of 1 in the seventh subculture generation of the endophyte revealed random and unpredictable nonsynonymous mutations. These random base substitutions led to dysfunction at the amino acid level. The controls, Top1 gene and rDNA, remained intact over subculturing, revealing that instability of biosynthetic genes of 1 was not reflected in the primary metabolic processes and functioning of the housekeeping genes. The present results reveal the causes of decreased production of 1 on subculturing, which could not be reversed by host-endophyte reassociation.
真菌内生菌栖息于所有已研究的陆地植物分类群的健康组织中,偶尔会产生宿主特异性化合物。我们最近从喜树中分离出一种内生真菌茄病镰刀菌,能够生物合成喜树碱(CPT,1),但在反复传代培养后,这种能力大大降低。具有受损 1 生物合成能力的内生真菌被人工接种到活体宿主植物中,然后在定植后回收。尽管可以重建宿主-内生菌的相互作用,但 1 的生物合成无法恢复。使用基于同源性的方法和高精度同位素比质谱(HP-IRMS),提出了一种跨物种生物合成途径,其中内生菌利用本土 G10H(香叶醇 10-羟化酶)、SLS(贝壳杉烯合酶)和 TDC(色氨酸脱羧酶)来生物合成 1 的前体。然而,内生菌需要宿主 STR(斯特罗辛合酶)才能将含氮部分(色胺,2)与含碳部分(贝壳杉烯,3)缩合形成斯特罗辛(4)并完成 1 的生物合成。内生菌的第七代传代中 1 的生物合成基因揭示了随机和不可预测的非同义突变。这些随机的碱基替换导致氨基酸水平的功能丧失。对照物 Top1 基因和 rDNA 在传代过程中保持完整,表明 1 的生物合成基因的不稳定性并没有反映在初级代谢过程和管家基因的功能中。目前的结果揭示了 1 产量在传代培养中降低的原因,这种降低无法通过宿主-内生菌的再结合来逆转。