Suppr超能文献

果蝇 hedgehog 信号通路和 engrailed-runt 相互抑制作用指导中线胶质细胞向不同的包绕和非包绕命运分化。

Drosophila hedgehog signaling and engrailed-runt mutual repression direct midline glia to alternative ensheathing and non-ensheathing fates.

机构信息

Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA.

出版信息

Development. 2011 Apr;138(7):1285-95. doi: 10.1242/dev.056895. Epub 2011 Feb 24.

Abstract

The Drosophila CNS contains a variety of glia, including highly specialized glia that reside at the CNS midline and functionally resemble the midline floor plate glia of the vertebrate spinal cord. Both insect and vertebrate midline glia play important roles in ensheathing axons that cross the midline and secreting signals that control a variety of developmental processes. The Drosophila midline glia consist of two spatially and functionally distinct populations. The anterior midline glia (AMG) are ensheathing glia that migrate, surround and send processes into the axon commissures. By contrast, the posterior midline glia (PMG) are non-ensheathing glia. Together, the Notch and hedgehog signaling pathways generate AMG and PMG from midline neural precursors. Notch signaling is required for midline glial formation and for transcription of a core set of midline glial-expressed genes. The Hedgehog morphogen is secreted from ectodermal cells adjacent to the CNS midline and directs a subset of midline glia to become PMG. Two transcription factor genes, runt and engrailed, play important roles in AMG and PMG development. The runt gene is expressed in AMG, represses engrailed and maintains AMG gene expression. The engrailed gene is expressed in PMG, represses runt and maintains PMG gene expression. In addition, engrailed can direct midline glia to a PMG-like non-ensheathing fate. Thus, two signaling pathways and runt-engrailed mutual repression initiate and maintain two distinct populations of midline glia that differ functionally in gene expression, glial migration, axon ensheathment, process extension and patterns of apoptosis.

摘要

果蝇中枢神经系统含有多种胶质细胞,包括高度特化的胶质细胞,这些胶质细胞位于中枢神经系统中线,并在功能上类似于脊椎动物脊髓的中线基板胶质细胞。昆虫和脊椎动物的中线胶质细胞在包绕穿过中线的轴突和分泌信号方面发挥着重要作用,这些信号控制着各种发育过程。果蝇中线胶质细胞由两个空间和功能上不同的群体组成。前中线胶质细胞 (AMG) 是包绕胶质细胞,它们迁移、包围并将突起延伸到轴突连合中。相比之下,后中线胶质细胞 (PMG) 是非包绕胶质细胞。Notch 和 Hedgehog 信号通路共同从前中线神经前体细胞中产生 AMG 和 PMG。Notch 信号对于中线胶质细胞的形成和中线胶质细胞表达基因的核心集的转录是必需的。Hedgehog 形态发生素从邻近中枢神经系统中线的外胚层细胞中分泌出来,并指导一部分中线胶质细胞成为 PMG。两个转录因子基因 runt 和 engrailed 在 AMG 和 PMG 发育中发挥重要作用。 runt 基因在 AMG 中表达,抑制 engrailed 并维持 AMG 基因表达。 engrailed 基因在 PMG 中表达,抑制 runt 并维持 PMG 基因表达。此外, engrailed 可以指导中线胶质细胞向 PMG 样非包绕命运分化。因此,两个信号通路和 runt-engrailed 相互抑制作用启动并维持了两个具有不同功能的中线胶质细胞群体,它们在基因表达、胶质细胞迁移、轴突包绕、突起延伸和凋亡模式方面存在差异。

相似文献

2
Time-lapse imaging reveals stereotypical patterns of Drosophila midline glial migration.
Dev Biol. 2012 Jan 15;361(2):232-44. doi: 10.1016/j.ydbio.2011.10.024. Epub 2011 Oct 26.
3
Determination of cell fate along the anteroposterior axis of the Drosophila ventral midline.
Development. 2006 Mar;133(6):1001-12. doi: 10.1242/dev.02288. Epub 2006 Feb 8.
4
Enhancer diversity and the control of a simple pattern of Drosophila CNS midline cell expression.
Dev Biol. 2014 Aug 15;392(2):466-82. doi: 10.1016/j.ydbio.2014.05.011. Epub 2014 May 20.
6
Multiple Notch signaling events control Drosophila CNS midline neurogenesis, gliogenesis and neuronal identity.
Development. 2008 Sep;135(18):3071-9. doi: 10.1242/dev.022343. Epub 2008 Aug 13.
8
Gliatrophic and gliatropic roles of PVF/PVR signaling during axon guidance.
Glia. 2008 Jan 15;56(2):164-76. doi: 10.1002/glia.20601.
9
Axon-glial interactions at the Drosophila CNS midline.
Cell Adh Migr. 2010 Jan-Mar;4(1):67-71. doi: 10.4161/cam.4.1.10208. Epub 2010 Jan 29.

引用本文的文献

1
Engrailed transcription factors direct excitatory cerebellar neuron diversity and survival.
Development. 2024 Jul 15;151(14). doi: 10.1242/dev.202502. Epub 2024 Jul 26.
2
Patched-Related Is Required for Proper Development of Embryonic Nervous System.
Front Neurosci. 2022 Aug 23;16:920670. doi: 10.3389/fnins.2022.920670. eCollection 2022.
3
Early lineage segregation of the retinal basal glia in the Drosophila eye disc.
Sci Rep. 2020 Oct 28;10(1):18522. doi: 10.1038/s41598-020-75581-w.
4
Embryonic CNS Development: Neurogenesis, Gliogenesis, Cell Fate, and Differentiation.
Genetics. 2019 Dec;213(4):1111-1144. doi: 10.1534/genetics.119.300974.
5
Origins of glial cell populations in the insect nervous system.
Curr Opin Insect Sci. 2016 Dec;18:96-104. doi: 10.1016/j.cois.2016.09.003. Epub 2016 Sep 28.
6
Chromatin profiling of Drosophila CNS subpopulations identifies active transcriptional enhancers.
Development. 2016 Oct 15;143(20):3723-3732. doi: 10.1242/dev.136895.
7
Hedgehog signaling regulates gene expression in planarian glia.
Elife. 2016 Sep 9;5:e16996. doi: 10.7554/eLife.16996.
10
Enhancer diversity and the control of a simple pattern of Drosophila CNS midline cell expression.
Dev Biol. 2014 Aug 15;392(2):466-82. doi: 10.1016/j.ydbio.2014.05.011. Epub 2014 May 20.

本文引用的文献

3
Common motifs shared by conserved enhancers of Drosophila midline glial genes.
J Exp Zool B Mol Dev Evol. 2011 Jan 15;316(1):61-75. doi: 10.1002/jez.b.21382. Epub 2010 Nov 2.
4
Axon-glial interactions at the Drosophila CNS midline.
Cell Adh Migr. 2010 Jan-Mar;4(1):67-71. doi: 10.4161/cam.4.1.10208. Epub 2010 Jan 29.
6
Drosophila Neurexin IV stabilizes neuron-glia interactions at the CNS midline by binding to Wrapper.
Development. 2009 Apr;136(8):1251-61. doi: 10.1242/dev.032847. Epub 2009 Mar 4.
7
Neuroscience: Glia - more than just brain glue.
Nature. 2009 Feb 5;457(7230):675-7. doi: 10.1038/457675a.
8
Drosophila neurotrophins reveal a common mechanism for nervous system formation.
PLoS Biol. 2008 Nov 18;6(11):e284. doi: 10.1371/journal.pbio.0060284.
9
Multiple Notch signaling events control Drosophila CNS midline neurogenesis, gliogenesis and neuronal identity.
Development. 2008 Sep;135(18):3071-9. doi: 10.1242/dev.022343. Epub 2008 Aug 13.
10
Novel signals controlling embryonic Schwann cell development, myelination and dedifferentiation.
J Peripher Nerv Syst. 2008 Jun;13(2):122-35. doi: 10.1111/j.1529-8027.2008.00168.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验