Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), P.O. Box 7014, SE-75007 Uppsala, Sweden.
Sci Total Environ. 2011 Apr 15;409(10):1900-8. doi: 10.1016/j.scitotenv.2011.01.049. Epub 2011 Feb 24.
Degradation of pesticides in soils is both spatially variable and also one of the most sensitive factors determining losses to surface water and groundwater. To date, no general guidance is available on suitable approaches for dealing with spatial variation in pesticide degradation in catchment or regional scale modeling applications. The purpose of the study was therefore to study the influence of various soil physical, chemical and microbiological characteristics on pesticide persistence in the contrasting cultivated soils found in a small (13 km(2)) agricultural catchment in Sweden and to develop and test a simple model approach that could support catchment scale modeling. Persistence of bentazone, glyphosate and isoproturon was investigated in laboratory incubation experiments. Degradation rate constants were highly variable with coefficients of variation ranging between 42 and 64% for the three herbicides. Multiple linear regression analysis and Mallows Cp statistic were employed to select the best set of independent parameters accounting for the variation in degradation. Soil pH and the proportion of active microorganisms (r) together explained 69% of the variation in the bentazone degradation rate constant; the Freundlich sorption co-efficient (K(f)) and soil laccase activity together explained 88% of the variation in degradation rate of glyphosate, while soil pH was a significant predictor (p<0.05) for isoproturon persistence. However, correlations between many potential predictor variables made clear interpretations of the statistical analysis difficult. Multiplicative models based on two predictors chosen 'a priori', one accounting for microbial activity (e.g. microbial respiration, laccase activity or the surrogate variable soil organic carbon, SOC) and one accounting for the effects of sorption on bioavailability, showed promise to support predictions of degradation for large-scale modeling applications, explaining up to 50% of the variation in herbicide persistence.
土壤中农药的降解不仅具有空间变异性,还是决定地表和地下水中农药损失的最敏感因素之一。迄今为止,对于在集水区或区域尺度建模应用中处理农药降解空间变异性的合适方法,尚无一般性指导。因此,本研究的目的是研究各种土壤物理、化学和微生物特性对瑞典一个小(13 平方公里)农业集水区中不同耕作土壤中农药持久性的影响,并开发和测试一种简单的模型方法,以支持集水区尺度的建模。在实验室培养实验中研究了苯嗪草酮、草甘膦和异丙隆的持久性。降解率常数的变化很大,三个除草剂的变异系数范围在 42%到 64%之间。多元线性回归分析和 Mallows Cp 统计被用来选择最佳的独立参数集,以解释降解的变化。土壤 pH 值和活性微生物的比例(r)共同解释了苯嗪草酮降解率常数变化的 69%;土壤中氟里昂吸附系数(K(f))和土壤漆酶活性共同解释了草甘膦降解率变化的 88%,而土壤 pH 值是异丙隆持久性的一个显著预测因子(p<0.05)。然而,许多潜在预测变量之间的相关性使得对统计分析的解释变得困难。基于两个预先选择的预测因子的乘法模型,一个预测因子用于解释微生物活性(例如微生物呼吸、漆酶活性或替代变量土壤有机碳(SOC)),另一个预测因子用于解释吸附对生物利用度的影响,显示出支持大尺度建模应用中降解预测的潜力,解释了 50%的除草剂持久性变化。