IEEE Trans Neural Netw Learn Syst. 2013 Jul;24(7):1023-35. doi: 10.1109/TNNLS.2013.2249088.
A sparse representation-based classifier (SRC) is developed and shows great potential for real-world face recognition. This paper presents a dimensionality reduction method that fits SRC well. SRC adopts a class reconstruction residual-based decision rule, we use it as a criterion to steer the design of a feature extraction method. The method is thus called the SRC steered discriminative projection (SRC-DP). SRC-DP maximizes the ratio of between-class reconstruction residual to within-class reconstruction residual in the projected space and thus enables SRC to achieve better performance. SRC-DP provides low-dimensional representation of human faces to make the SRC-based face recognition system more efficient. Experiments are done on the AR, the extended Yale B, and PIE face image databases, and results demonstrate the proposed method is more effective than other feature extraction methods based on the SRC.
基于稀疏表示的分类器(SRC)具有巨大的应用潜力,可用于实际的人脸识别。本文提出了一种与 SRC 配合良好的降维方法。SRC 采用基于类重构残差的决策规则,我们将其用作引导特征提取方法设计的标准。该方法因此被称为 SRC 引导判别投影(SRC-DP)。SRC-DP 最大化了投影空间中类间重构残差与类内重构残差的比值,从而使 SRC 能够取得更好的性能。SRC-DP 为人脸提供了低维表示,使基于 SRC 的人脸识别系统更加高效。在 AR、扩展 Yale B 和 PIE 人脸图像数据库上进行了实验,结果表明,与基于 SRC 的其他特征提取方法相比,该方法更为有效。