IEEE Trans Pattern Anal Mach Intell. 2011 Sep;33(9):1699-712. doi: 10.1109/TPAMI.2011.41. Epub 2011 Mar 3.
Monocular SLAM has the potential to turn inexpensive cameras into powerful pose sensors for applications such as robotics and augmented reality. We present a relocalization module for such systems which solves some of the problems encountered by previous monocular SLAM systems--tracking failure, map merging, and loop closure detection. This module extends recent advances in keypoint recognition to determine the camera pose relative to the landmarks within a single frame time of 33 ms. We first show how this module can be used to improve the robustness of these systems. Blur, sudden motion, and occlusion can all cause tracking to fail, leading to a corrupted map. Using the relocalization module, the system can automatically detect and recover from tracking failure while preserving map integrity. Extensive tests show that the system can then reliably generate maps for long sequences even in the presence of frequent tracking failure. We then show that the relocalization module can be used to recognize overlap in maps, i.e., when the camera has returned to a previously mapped area. Having established an overlap, we determine the relative pose of the maps using trajectory alignment so that independent maps can be merged and loop closure events can be recognized. The system combining all of these abilities is able to map larger environments and for significantly longer periods than previous systems.
单目 SLAM 有可能将廉价的相机转化为机器人和增强现实等应用中的强大位姿传感器。我们为这种系统提出了一个重定位模块,解决了之前的单目 SLAM 系统中遇到的一些问题——跟踪失败、地图合并和环路闭合检测。该模块将最近在关键点识别方面的进展扩展到了在 33 毫秒的单个帧时间内确定相机相对于单个帧内地标物的位姿。我们首先展示了如何使用这个模块来提高系统的鲁棒性。模糊、突然运动和遮挡都可能导致跟踪失败,从而导致地图损坏。使用重定位模块,系统可以在保持地图完整性的同时自动检测和从跟踪失败中恢复。广泛的测试表明,即使在频繁跟踪失败的情况下,该系统也可以可靠地为长序列生成地图。然后,我们展示了重定位模块可以用于识别地图中的重叠,即相机已返回先前映射区域的情况。建立重叠后,我们使用轨迹对准确定地图的相对位姿,以便可以合并独立的地图并识别环路闭合事件。具有所有这些功能的系统能够映射更大的环境,并且可以持续更长的时间,而不是以前的系统。