Suppr超能文献

将 TCP 模型纳入微观扩展中的设置不确定性和肿瘤细胞密度变化,以指导治疗计划。

A TCP model incorporating setup uncertainty and tumor cell density variation in microscopic extension to guide treatment planning.

机构信息

Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan 48202, USA.

出版信息

Med Phys. 2011 Jan;38(1):439-48. doi: 10.1118/1.3531543.

Abstract

PURPOSE

Tumor control probability (TCP) models have been proposed to evaluate and guide treatment planning. However, they are usually based on the dose volume histograms (DVHs) of the planning target volume (PTV) and may not properly reflect the substantial variation in tumor burden from the gross tumor volume (GTV) to the microscopic extension (ME) and to the margin of PTV. In this study, the authors propose a TCP model that can account for the effects of setup uncertainties and tumor cell density decay in the ME region.

METHODS

The proposed TCP model is based on the total surviving clonogenic tumor cells (CTCs) after irradiation of a known dose distribution to a region with a CTC distribution. The CTC density was considered to be homogeneous within the GTV, while decreasing exponentially in the ME region. The effect of random setup uncertainty was modeled by convolving the dose distribution with a Gaussian probability density function, represented by a standard deviation, sigma. The effect of systematic setup uncertainty was modeled by summing each calculated TCP for all potential offsets in a Gaussian probability, represented by sigma. The model was then applied to simplified cases to demonstrate the concept. TCP dose responses were calculated for various GTV volumes, DVH shapes, CTC density decay coefficients, probabilities of lymph node metastasis, and random and systematic errors. The slopes of the dose falloff to cover the CTC density decay in the ME region and the margins to compensate setup errors were also analyzed in generalized cases.

RESULTS

The sigmoid TCP dose response curve shifted to the right substantially for a larger GTV, while modestly for cold spots in DVH. A dose distribution with a uniform dose within the GTV, and a linear dose falloff in the ME region, tended to cause a minimal TCP deterioration if a proper dose falloff slope was used. When the dose falloff slope was less steep than a critical slope represented by kT, the D50, which is the prescription dose at TCP=50%, and gamma50, which is the TCP slope at TCP=50%, varied little with different dose falloff slopes. However, both D50 and gamma50 deteriorated fast when the slopes were steeper than kT. The random setup error tended to shift the TCP curve to the right, while the systematic error tended to compress the curve downward. For combined random and systematic errors, we demonstrated that based on the model, a margin of mean square root of (0.75 sigma)2 + (1.15 sigma)2 added to the GTV was found to cause a TCP change corresponding to 2% drop at TCP=90%, or 0.5 Gy shift in D50.

CONCLUSIONS

This study conceptually demonstrated that a TCP model incorporating the effects of tumor cell density variation and setup uncertainty may be used to guide radiation treatment planning.

摘要

目的

肿瘤控制概率(TCP)模型已被提出用于评估和指导治疗计划。然而,它们通常基于计划靶区(PTV)的剂量体积直方图(DVH),并且可能无法正确反映从大体肿瘤体积(GTV)到微观延伸(ME)以及 PTV 边界的肿瘤负担的实质性变化。在这项研究中,作者提出了一种 TCP 模型,可以考虑到设置不确定性和 ME 区域中肿瘤细胞密度衰减的影响。

方法

所提出的 TCP 模型基于照射已知剂量分布后具有 CTC 分布的区域中的总存活克隆肿瘤细胞(CTC)的数量。在 GTV 内,CTC 密度被认为是均匀的,而在 ME 区域中则呈指数衰减。随机设置不确定性的影响通过将剂量分布与高斯概率密度函数卷积来建模,该函数由标准差 σ 表示。系统设置不确定性的影响通过在高斯概率下对所有潜在偏移量的每个计算 TCP 求和来建模,该概率由 σ 表示。然后,该模型应用于简化情况以演示该概念。针对各种 GTV 体积、DVH 形状、CTC 密度衰减系数、淋巴结转移概率以及随机和系统误差,计算了 TCP 剂量反应。在广义情况下,还分析了覆盖 ME 区域中 CTC 密度衰减和补偿设置误差的余量的剂量下降斜率。

结果

对于更大的 GTV,sigmoid TCP 剂量反应曲线向右大幅移动,而在 DVH 中的冷点则适度移动。在 GTV 内具有均匀剂量且在 ME 区域中具有线性剂量下降的剂量分布,如果使用适当的剂量下降斜率,则往往会导致最小的 TCP 恶化。当剂量下降斜率小于由 kT 表示的临界斜率时,D50(即 TCP=50%时的处方剂量)和 gamma50(即 TCP=50%时的 TCP 斜率)几乎不会随不同的剂量下降斜率而变化。然而,当斜率大于 kT 时,D50 和 gamma50 的恶化速度都很快。随机设置误差往往会使 TCP 曲线向右移动,而系统误差往往会使曲线向下压缩。对于随机和系统误差的组合,我们证明了,根据该模型,将 GTV 增加均值平方根(0.75σ)^2 +(1.15σ)^2 被发现会导致 TCP 变化,相当于 TCP=90%时下降 2%,或 D50 中 0.5Gy 的偏移。

结论

本研究从概念上证明了一种纳入肿瘤细胞密度变化和设置不确定性影响的 TCP 模型可用于指导放射治疗计划。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验