Suppr超能文献

将肿瘤控制概率模型拟合至前列腺癌三维适形放射治疗后的活检结果:从临床数据推导肿瘤放射生物学参数的陷阱

Fitting tumor control probability models to biopsy outcome after three-dimensional conformal radiation therapy of prostate cancer: pitfalls in deducing radiobiologic parameters for tumors from clinical data.

作者信息

Levegrün S, Jackson A, Zelefsky M J, Skwarchuk M W, Venkatraman E S, Schlegel W, Fuks Z, Leibel S A, Ling C C

机构信息

Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.

出版信息

Int J Radiat Oncol Biol Phys. 2001 Nov 15;51(4):1064-80. doi: 10.1016/s0360-3016(01)01731-x.

Abstract

PURPOSE

The goal of tumor control probability (TCP) models is to predict local control for inhomogeneous dose distributions. All existing fits of TCP models to clinical data have utilized summaries of dose distributions (e.g., prescription dose). Ideally, model fits should be based on dose distributions in the tumor, but usually only dose-volume histograms (DVH) of the planning target volume (PTV) are available. We fit TCP models to biopsy outcome after three-dimensional conformal radiation therapy of prostate cancer using either a dose distribution summary or the full DVH in the PTV. We discuss differences in the radiobiologic parameters and dose-response curves and demonstrate pitfalls in interpreting the results.

METHODS AND MATERIAL

Two mechanistic TCP models were fit with a maximum likelihood technique to biopsy outcome from 103 prostate patients treated at Memorial Sloan-Kettering Cancer Center. Fits were performed separately for different patient subgroups defined by tumor-related prognostic factors. Fits were based both on full DVHs, denoted TCP(DVH(calc)), and, alternatively, assuming a homogeneous PTV dose given by the mean dose (Dmean) of each DVH, denoted TCP(Dmean(calc)). Dose distributions for these patients were very homogeneous with any cold spots located on the periphery of the PTV. These cold spots were uncorrelated with biopsy outcome, likely because the low-dose regions may not contain tumor cells. Therefore, fits of TCP models that are potentially sensitive to cold spots (e.g., TCP(DVH(calc))) likely give biologic parameters that diminish this sensitivity. In light of this, we examined differences in fitted clonogenic cell number, N(C), or density, rho(C), surviving fraction after 2 Gy, SF(2), or radiosensitivity, alpha, and their standard deviations in the population, sigma(SF(2)) and sigma(alpha), resulting from fits based on TCP(DVH(calc)) and TCP(Dmean(calc)). Dose-response curves for homogeneous irradiation (characterized by TCD(50), the dose for a TCP of 50%) and differences in TCP predictions calculated from the DVH using alternatively derived parameters were evaluated.

RESULTS

Fits of TCP(Dmean(calc)) are better (i.e., have larger likelihood) than fits of TCP(DVH(calc)). For TCP(Dmean(calc)) fits, matching values of SF(2) and sigma(SF(2)) (or alpha and sigma(alpha)) exist for all N(C) (rho(C)) above a threshold that give fits of equal quality, with no maximum in likelihood. In contrast, TCP(DVH(calc)) fits have maximum likelihood for high SF(2) (low alpha) values that minimize effects of cold spots. Consequently, small N(C) (rho(C)) values are obtained to match the observed control rate. For example, for patients in low-, intermediate-, and high-risk groups, optimum values of SF(2) and N(C) are 0.771 and 3.3 x 10(3), 0.736 and 2.2 x 10(4), and 0.776 and 1.0 x 10(4), respectively. The TCD(50) of dose-response curves for intermediate-risk patients is 2.6 Gy lower using TCP(DVH(calc)) parameters (TCD(50) = 67.8 Gy) than for TCP(Dmean(calc)) parameters (TCD(50) = 70.4 Gy). TCP predictions calculated from the DVH using risk group-dependent TCP(Dmean(calc)) parameters are up to 53% lower than corresponding calculations with TCP(DVH(calc)) parameters.

CONCLUSION

For our data, TCP parameters derived from DVHs likely do not reflect true radiobiologic parameters in the tumor, but are a consequence of the reduced importance of low-dose regions at the periphery of the PTV. Deriving radiobiologic parameters from TCP(Dmean(calc)) fits is not possible unless one parameter is already known. TCP predictions using TCP(DVH(calc)) and TCP(Dmean(calc)) parameters may differ substantially, requiring consistency in the derivation and application of model parameters. The proper derivation of radiobiologic parameters from clinical data requires both substantial dose inhomogeneities and understanding of how these coincide with tumor location.

摘要

目的

肿瘤控制概率(TCP)模型的目标是预测非均匀剂量分布情况下的局部控制情况。现有的TCP模型与临床数据的所有拟合均使用剂量分布的汇总信息(例如处方剂量)。理想情况下,模型拟合应基于肿瘤内的剂量分布,但通常仅能获取计划靶体积(PTV)的剂量体积直方图(DVH)。我们使用剂量分布汇总信息或PTV中的完整DVH,将TCP模型拟合至前列腺癌三维适形放射治疗后的活检结果。我们讨论了放射生物学参数和剂量反应曲线的差异,并展示了解释结果时的陷阱。

方法与材料

使用最大似然技术将两种机制性TCP模型拟合至纪念斯隆凯特琳癌症中心治疗的103例前列腺癌患者的活检结果。针对由肿瘤相关预后因素定义的不同患者亚组分别进行拟合。拟合基于完整DVH,记为TCP(DVH(calc)),或者,假设PTV剂量均匀,由每个DVH的平均剂量(Dmean)给出,记为TCP(Dmean(calc))。这些患者的剂量分布非常均匀,任何冷点均位于PTV的周边。这些冷点与活检结果无关,可能是因为低剂量区域可能不包含肿瘤细胞。因此,对冷点可能敏感的TCP模型拟合(例如TCP(DVH(calc)))可能给出会降低这种敏感性的生物学参数。鉴于此,我们研究了基于TCP(DVH(calc))和TCP(Dmean(calc))拟合得出的群体中拟合的克隆细胞数N(C)或密度rho(C)、2 Gy后的存活分数SF(2)或放射敏感性alpha及其标准差sigma(SF(2))和sigma(alpha)的差异。评估了均匀照射的剂量反应曲线(以TCD(50)为特征,即TCP为50%时的剂量)以及使用交替推导参数从DVH计算得出的TCP预测值的差异。

结果

TCP(Dmean(calc))的拟合效果比TCP(DVH(calc))更好(即似然性更大)。对于TCP(Dmean(calc))拟合,在高于某个阈值的所有N(C)(rho(C))情况下,均存在与SF(2)和sigma(SF(2))(或alpha和sigma(alpha))匹配的值,这些值给出质量相等的拟合,似然性无最大值。相比之下,TCP(DVH(calc))拟合在高SF(2)(低alpha)值时具有最大似然性,这些值可使冷点的影响最小化。因此,获得较小的N(C)(rho(C))值以匹配观察到的控制率。例如,对于低、中、高风险组的患者,SF(2)和N(C)的最佳值分别为0.771和3.3×10³、0.736和2.2×10⁴以及0.776和1.0×10⁴。使用TCP(DVH(calc))参数时,中风险患者剂量反应曲线的TCD(50)(TCD(50)=67.8 Gy)比使用TCP(Dmean(calc))参数时(TCD(50)=70.4 Gy)低2.6 Gy。使用依赖风险组的TCP(Dmean(calc))参数从DVH计算得出的TCP预测值比使用TCP(DVH(calc))参数的相应计算值低多达53%。

结论

对于我们的数据,从DVH得出的TCP参数可能无法反映肿瘤中的真实放射生物学参数,而是PTV周边低剂量区域重要性降低的结果。除非已知一个参数,否则无法从TCP(Dmean(calc))拟合中得出放射生物学参数。使用TCP(DVH(calc))和TCP(Dmean(calc))参数进行的TCP预测可能存在显著差异,这要求模型参数的推导和应用具有一致性。从临床数据正确推导放射生物学参数既需要大量的剂量不均匀性,也需要了解这些不均匀性与肿瘤位置的重合情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验