Department of Physics, Clatterbridge Cancer Centre NHS Foundation Trust, Bebington, Wirral CH63 4JY, United Kingdom.
Med Phys. 2013 Apr;40(4):041715. doi: 10.1118/1.4795131.
Geometric uncertainties are inevitable in radiotherapy. To account for these uncertainties, a margin is added to the clinical target volume (CTV) to create the planning target volume (PTV), and its size is critical for obtaining an optimal treatment plan. Dose-based (i.e., physical) margin recipes have been published and widely used, but it is important to consider fractionation and the radiobiological characteristics of the tumor when deriving margins. Hence a tumor control probability (TCP)-based margin is arguably more appropriate.
Margins required for ≤ 1% loss in mean population TCP (relative to a static tumor) for varying numbers of fractions, varying slope of the dose-response curve (γ50) and varying degrees of dose distribution conformity are investigated for spherical and four-field (4F)-brick dose distributions. To simulate geometric uncertainties, systematic (Σ) and random (σ) tumor displacements were sampled from Gaussian distributions and applied to each fraction for a spherical CTV. Interfraction tumor motion was simulated and the dose accumulated from fraction to fraction on a voxel-by-voxel basis to calculate TCP. PTV margins derived from this work for various fraction numbers and dose-response slopes (γ50) for different degrees of geometric uncertainties are compared with margins calculated using published physical-dose- and TCP-based recipes.
Larger margins are required for a decrease in the number of fractions and for an increase in γ50 for both spherical and 4F-brick dose distributions. However, the margins can be close to zero for the 4F-brick distribution for small geometric uncertainties (Σ = 1, σ = 1 mm) irrespective of the number of fractions and the magnitude of γ50 due to the higher "incidental" dose outside the tumor. For Σ = 1 mm and σ = 3 mm, physical-dose-based recipes underestimate the margin only for the combination of hypofractionated treatments and tumors with a high γ50. For all other situations TCP-based margins are smaller than physical-dose-based recipes.
Margins depend on the number of fractions and γ50 in addition to Σ and σ. Dose conformity should also be considered since the required margin increases with increasing dose conformity. Ideally margins should be anisotropic and individualized, taking into account γ50, number of fractions, and the dose distribution, as well as estimates of Σ and σ. No single "recipe" can adequately account for all these variables.
放疗中存在几何不确定性是不可避免的。为了考虑这些不确定性,需要在临床靶区(CTV)的基础上增加一个边缘来创建计划靶区(PTV),其大小对于获得最佳治疗计划至关重要。已经发布并广泛使用了基于剂量的(即物理)边缘配方,但在推导边缘时,考虑分割和肿瘤的放射生物学特性非常重要。因此,基于肿瘤控制概率(TCP)的边缘更合适。
研究了对于不同分割次数、剂量-反应曲线斜率(γ50)和剂量分布一致性程度的变化,对于球形和四野(4F)砖剂量分布,需要多少边缘才能使平均人群 TCP 损失小于 1%(相对于静态肿瘤)。为了模拟几何不确定性,系统(Σ)和随机(σ)肿瘤位移从高斯分布中采样,并应用于球形 CTV 的每个分割。模拟了分次间肿瘤运动,并在体素基础上逐次积累剂量以计算 TCP。对于不同的几何不确定性程度,对于不同的分割次数和剂量-反应斜率(γ50),本文工作推导的 PTV 边缘与使用已发表的物理剂量和基于 TCP 的配方计算的边缘进行了比较。
对于球形和 4F 砖剂量分布,分割次数减少和 γ50 增加都需要更大的边缘。然而,对于小的几何不确定性(Σ=1,σ=1mm),4F 砖分布的边缘可以接近零,无论分割次数和 γ50 的大小如何,因为肿瘤外的“偶然”剂量较高。对于 Σ=1mm 和 σ=3mm,由于物理剂量基于配方仅低估了低分割治疗和高 γ50 肿瘤的组合的边缘。对于所有其他情况,基于 TCP 的边缘都小于物理剂量基于配方。
边缘取决于分割次数和 γ50 以及 Σ 和 σ。由于需要的边缘随剂量一致性的增加而增加,因此还应考虑剂量一致性。理想情况下,边缘应该是各向异性的和个体化的,考虑到 γ50、分割次数和剂量分布,以及 Σ 和 σ 的估计。没有单一的“配方”可以充分考虑所有这些变量。