Suppr超能文献

采用 Ti/SnO2-Sb-Bi 阳极高效电化学氧化全氟辛酸。

Efficient electrochemical oxidation of perfluorooctanoate using a Ti/SnO2-Sb-Bi anode.

机构信息

POPs Research Centre, School of Environment, Tsinghua University, Beijing 100084, China.

出版信息

Environ Sci Technol. 2011 Apr 1;45(7):2973-9. doi: 10.1021/es1024542. Epub 2011 Mar 1.

Abstract

The electrochemical decomposition of persistent perfluorooctanoate (PFOA) with a Ti/SnO2-Sb-Bi electrode was demonstrated in this study. After 2 h electrolysis, over 99% of PFOA (25 mL of 50 mg·L(-1)) was degraded with a first-order kinetic constant of 1.93 h(-1). The intermediate products including short-chain perfluorocarboxyl anions (CF3COO-, C2F5COO-, C3F7COO-, C4F9COO-, C5F11COO-, and C6F13COO-) and F- were detected in the aqueous solution. The electrochemical oxidation mechanism was revealed, that PFOA decomposition first occurred through a direct one electron transfer from the carboxyl group in PFOA to the anode at the potential of 3.37 V (vs saturated calomel electrode, SCE). After that, the PFOA radical was decarboxylated to form perfluoroheptyl radical which allowed a defluorination reaction between perfluoroheptyl radical and hydroxyl radical/O2. Electrospray ionization (ESI) mass spectrum further confirmed that the oxidation of PFOA on the Ti/SnO2-Sb-Bi electrode proceeded from the carboxyl group in PFOA rather than C-C cleavage, and the decomposition processes followed the CF2 unzipping cycle. The electrochemical technique with the Ti/SnO2-Sb-Bi electrode provided a potential method for PFOA degradation in the aqueous solution.

摘要

本研究展示了使用 Ti/SnO2-Sb-Bi 电极电化学分解持久性全氟辛烷酸(PFOA)。经过 2 小时电解,超过 99%的 PFOA(25 毫升 50 毫克/升)被降解,一级动力学常数为 1.93 小时-1。在水溶液中检测到包括短链全氟羧酸盐阴离子(CF3COO-、C2F5COO-、C3F7COO-、C4F9COO-、C5F11COO-和 C6F13COO-)和 F-在内的中间产物。揭示了电化学氧化机制,即 PFOA 分解首先通过 PFOA 中羧基在 3.37 V(相对于饱和甘汞电极,SCE)电位下向阳极直接单电子转移发生。之后,PFOA 自由基脱羧形成全氟庚基自由基,允许全氟庚基自由基与羟基自由基/O2 之间发生脱氟反应。电喷雾电离(ESI)质谱进一步证实,Ti/SnO2-Sb-Bi 电极上 PFOA 的氧化是从 PFOA 的羧基开始的,而不是 C-C 断裂,且分解过程遵循 CF2 解拉链循环。Ti/SnO2-Sb-Bi 电极的电化学技术为水溶液中 PFOA 的降解提供了一种潜在方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验