Zhang Yi, Guo Lei, Hoffmann Michael R
Linde Laboratories, California Institute of Technology, Pasadena, California91125, United States.
Department of Civil Engineering, University of Arkansas, Fayetteville, Arkansas72701, United States.
ACS ES T Eng. 2023 Jan 26;3(3):335-348. doi: 10.1021/acsestengg.2c00337. eCollection 2023 Mar 10.
Electrochemical oxidation provides a versatile technique for treating wastewater streams onsite. We previously reported that a two-layer heterojunction Ni-Sb-SnO anode (NAT/AT) can produce both ozone (O) and hydroxyl radical (OH). In this study, we explore further the applicability of NAT/AT anodes for oxidizing pharmaceutical compounds using carbamazepine (CBZ) and fluconazole (FCZ) as model probe compounds. Details of the oxidation reaction kinetics and subsequent reaction products are investigated in the absence and presence of chloride (Cl) and sulfate (SO ). In all cases, faster or comparable degradation kinetics of CBZ and FCZ are achieved using the double-layered NAT/AT anode coupled with a stainless steel (SS) cathode in direct comparison to an identical setup using a boron-doped diamond anode. Production of O on NAT/AT enhances the elimination of both parent compounds and their transformation products (TPs). Very fast CBZ degradation is observed during NAT/AT-SS electrolysis in both NaClO and NaCl electrolytes. However, more reaction products are identified in the presence of Cl than ClO (23 TPs vs 6). Rapid removal of FCZ is observed in NaClO, while the degradation rate is retarded in NaCl depending on the [Cl]. In SO -containing electrolytes, altered reaction pathways and transformation product distributions are observed due to sulfate radical generation. SO oxidation produces fewer hydroxylated products and promotes the oxidation of aldehydes to carboxylic acids. Similar trend in treatment performance is observed in mixtures of CBZ and FCZ with other pharmaceutical compounds in latrine wastewater and secondary WWTP effluent.
电化学氧化为现场处理废水流提供了一种通用技术。我们之前报道过双层异质结Ni-Sb-SnO阳极(NAT/AT)能产生臭氧(O)和羟基自由基(OH)。在本研究中,我们以卡马西平(CBZ)和氟康唑(FCZ)作为模型探针化合物,进一步探索NAT/AT阳极氧化药物化合物的适用性。研究了在有无氯离子(Cl)和硫酸根离子(SO )存在的情况下氧化反应动力学及后续反应产物的细节。在所有情况下,与使用掺硼金刚石阳极的相同装置直接比较,使用双层NAT/AT阳极与不锈钢(SS)阴极耦合能实现更快或相当的CBZ和FCZ降解动力学。NAT/AT上O的产生增强了母体化合物及其转化产物(TPs)的去除。在NAT/AT-SS电解过程中,在NaClO和NaCl电解质中均观察到非常快速的CBZ降解。然而,与ClO (6种TPs)相比,在有Cl存在时鉴定出更多的反应产物(23种TPs)。在NaClO中观察到FCZ的快速去除,而在NaCl中降解速率因[Cl]而异。在含SO 的电解质中,由于硫酸根自由基的产生,观察到反应途径和转化产物分布发生改变。SO 氧化产生的羟基化产物较少,并促进醛氧化为羧酸。在厕所废水和二级污水处理厂出水的CBZ和FCZ与其他药物化合物的混合物中观察到类似的处理性能趋势。