Suppr超能文献

上皮组织中二光子自发荧光显微镜的最大成像深度。

Maximum imaging depth of two-photon autofluorescence microscopy in epithelial tissues.

机构信息

University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas 78712, USA.

出版信息

J Biomed Opt. 2011 Feb;16(2):026008. doi: 10.1117/1.3548646.

Abstract

Endogenous fluorescence provides morphological, spectral, and lifetime contrast that can indicate disease states in tissues. Previous studies have demonstrated that two-photon autofluorescence microscopy (2PAM) can be used for noninvasive, three-dimensional imaging of epithelial tissues down to approximately 150 μm beneath the skin surface. We report ex-vivo 2PAM images of epithelial tissue from a human tongue biopsy down to 370 μm below the surface. At greater than 320 μm deep, the fluorescence generated outside the focal volume degrades the image contrast to below one. We demonstrate that these imaging depths can be reached with 160 mW of laser power (2-nJ per pulse) from a conventional 80-MHz repetition rate ultrafast laser oscillator. To better understand the maximum imaging depths that we can achieve in epithelial tissues, we studied image contrast as a function of depth in tissue phantoms with a range of relevant optical properties. The phantom data agree well with the estimated contrast decays from time-resolved Monte Carlo simulations and show maximum imaging depths similar to that found in human biopsy results. This work demonstrates that the low staining inhomogeneity (∼ 20) and large scattering coefficient (∼ 10 mm(-1)) associated with conventional 2PAM limit the maximum imaging depth to 3 to 5 mean free scattering lengths deep in epithelial tissue.

摘要

内源性荧光提供形态、光谱和寿命对比,可以指示组织中的疾病状态。先前的研究表明,双光子自发荧光显微镜(2PAM)可用于对皮肤表面以下约 150μm 深度的上皮组织进行非侵入性、三维成像。我们报告了人舌活检上皮组织的离体 2PAM 图像,深度可达表面以下 370μm。在大于 320μm 深度处,焦外产生的荧光会使图像对比度降低到 1 以下。我们证明,使用传统的 80MHz 重复率超快激光振荡器,160mW 的激光功率(每个脉冲 2nJ)即可达到这些成像深度。为了更好地了解我们在上皮组织中能够达到的最大成像深度,我们研究了具有一系列相关光学特性的组织体模中深度对图像对比度的影响。体模数据与时间分辨蒙特卡罗模拟的估计对比度衰减吻合良好,并且显示出与在人体活检结果中发现的相似的最大成像深度。这项工作表明,与传统的 2PAM 相关的低染色不均匀性(约 20)和大散射系数(约 10mm^-1)限制了上皮组织中最大成像深度为 3 到 5 个平均自由程。

相似文献

1
Maximum imaging depth of two-photon autofluorescence microscopy in epithelial tissues.
J Biomed Opt. 2011 Feb;16(2):026008. doi: 10.1117/1.3548646.
2
On the fundamental imaging-depth limit in two-photon microscopy.
J Opt Soc Am A Opt Image Sci Vis. 2006 Dec;23(12):3139-49. doi: 10.1364/josaa.23.003139.
4
Image filtering for two-photon deep imaging of lymphonodes.
Eur Biophys J. 2008 Jul;37(6):979-87. doi: 10.1007/s00249-008-0323-y. Epub 2008 Apr 4.
5
Measuring the scattering coefficient of turbid media from two-photon microscopy.
Opt Express. 2013 Oct 21;21(21):25221-35. doi: 10.1364/OE.21.025221.
6
Single-beam homodyne SPIDER for multiphoton microscopy.
Opt Lett. 2008 Jul 1;33(13):1404-6. doi: 10.1364/ol.33.001404.
7
Tissue characterization using dimensionality reduction and fluorescence imaging.
Med Image Comput Comput Assist Interv. 2006;9(Pt 2):586-93. doi: 10.1007/11866763_72.

引用本文的文献

1
Two photon imaging probe with highly efficient autofluorescence collection at high scattering and deep imaging conditions.
Biomed Opt Express. 2024 Apr 18;15(5):3163-3182. doi: 10.1364/BOE.520729. eCollection 2024 May 1.
2
Method for optimizing imaging parameters to record neuronal and cellular activity at depth with bioluminescence.
Neurophotonics. 2024 Apr;11(2):024206. doi: 10.1117/1.NPh.11.2.024206. Epub 2024 Mar 28.
3
Numerical study of a convective cooling strategy for increasing safe power levels in two-photon brain imaging.
Biomed Opt Express. 2024 Jan 3;15(2):540-557. doi: 10.1364/BOE.507517. eCollection 2024 Feb 1.
5
Viewing life without labels under optical microscopes.
Commun Biol. 2023 May 25;6(1):559. doi: 10.1038/s42003-023-04934-8.
7
Unique emissive behavior of combustion-derived particles under illumination with femtosecond pulsed near-infrared laser light.
Nanoscale Adv. 2021 Aug 12;3(18):5355-5362. doi: 10.1039/d1na00248a. eCollection 2021 Sep 14.
9
Challenges and opportunities for small volumes delivery into the skin.
Biomicrofluidics. 2021 Jan 22;15(1):011301. doi: 10.1063/5.0030163. eCollection 2021 Jan.

本文引用的文献

3
Differentiation of normal and cancerous lung tissues by multiphoton imaging.
J Biomed Opt. 2009 Jul-Aug;14(4):044034. doi: 10.1117/1.3210768.
4
Deep tissue multiphoton microscopy using longer wavelength excitation.
Opt Express. 2009 Aug 3;17(16):13354-64. doi: 10.1364/oe.17.013354.
5
Three-dimensional computation of focused beam propagation through multiple biological cells.
Opt Express. 2009 Jul 20;17(15):12455-69. doi: 10.1364/oe.17.012455.
6
Multidimensional non-linear laser imaging of Basal Cell Carcinoma.
Opt Express. 2007 Aug 6;15(16):10135-48. doi: 10.1364/oe.15.010135.
7
In vivo nonlinear spectral imaging in mouse skin.
Opt Express. 2006 May 15;14(10):4395-402. doi: 10.1364/oe.14.004395.
9
Simultaneous spatial and temporal focusing of femtosecond pulses.
Opt Express. 2005 Mar 21;13(6):2153-9. doi: 10.1364/opex.13.002153.
10
Scanningless depth-resolved microscopy.
Opt Express. 2005 Mar 7;13(5):1468-76. doi: 10.1364/opex.13.001468.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验