Suppr超能文献

通过结合切应力和薄膜限制生产高度取向的胶原薄片。

Production of highly aligned collagen lamellae by combining shear force and thin film confinement.

机构信息

Center for Engineering in Medicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA.

出版信息

Acta Biomater. 2011 Jun;7(6):2437-47. doi: 10.1016/j.actbio.2011.02.038. Epub 2011 Mar 21.

Abstract

Load-bearing tissues owe their mechanical strength to their highly anisotropic collagenous structure. To date attempts to engineer mechanically strong connective tissue have failed, mainly due to a lack of ability to reproduce the native collagen organization in constructs synthesized by cultured cells in vitro. The ability to influence the orientation of self-assembling collagen molecules to produce highly anisotropic structures has applications ranging from de novo engineering of complex tissues to the production of organized scaffolds for cell culture contact guidance. In this investigation we have used the simple technique of spin-coating to produce highly aligned arrays of collagen fibrils. By a simple modification of the method we have also successfully produced orthogonal collagen lamellae. Alternating collagen lamellae are frequently seen in load-bearing tissues such as cornea, annulus fibrosus, and cortical bone. Culturing of corneal fibroblasts on aligned collagen shows that the cells adopt the organization of fibrils. In this investigation we observed the reversal of fibrillar growth direction or "hook" formation similar to that seen previously in a microfluidic shear flow chamber. Although the results of this investigation clearly show that it is possible to produce small areas (1cm(2)) of collagen fibrils with enough alignment to guide fibroblasts, there is evidence that thin film instabilities are likely to be a significant barrier to producing organized collagen fibrils over larger areas. Successful application of this method to produce highly controlled and organized collagenous structures will require the development of techniques to control thin film instability and will be the subject of future work.

摘要

承重组织的机械强度归功于其各向异性的胶原结构。迄今为止,试图设计机械强度高的结缔组织的尝试都失败了,主要是因为缺乏在体外培养细胞合成的构建体中重现天然胶原组织的能力。影响自组装胶原分子取向以产生各向异性结构的能力,其应用范围从复杂组织的从头工程设计到用于细胞培养接触引导的有组织支架的生产。在这项研究中,我们使用简单的旋涂技术来生产高度排列的胶原原纤维阵列。通过对该方法的简单修改,我们还成功地生产了正交胶原薄片。在诸如角膜、纤维环和皮质骨等承重组织中经常看到交替的胶原薄片。在排列的胶原上培养角膜成纤维细胞表明细胞采用纤维的组织。在这项研究中,我们观察到纤维生长方向的反转或“钩”形成,类似于以前在微流控剪切流室中观察到的情况。尽管这项研究的结果清楚地表明,有可能生产出具有足够取向以引导成纤维细胞的小面积(1cm²)胶原纤维,但有证据表明,薄膜不稳定性可能是在更大面积上产生有组织的胶原纤维的一个重大障碍。成功应用该方法生产高度可控和有组织的胶原结构将需要开发控制薄膜不稳定性的技术,这将是未来工作的主题。

相似文献

4
Dynamic shear-influenced collagen self-assembly.动态剪切影响的胶原蛋白自组装
Biomaterials. 2009 Dec;30(34):6581-92. doi: 10.1016/j.biomaterials.2009.07.070. Epub 2009 Sep 17.

引用本文的文献

3
Squishy matters - Corneal mechanobiology in health and disease.黏弹物质——健康与疾病中的角膜生物力学。
Prog Retin Eye Res. 2024 Mar;99:101234. doi: 10.1016/j.preteyeres.2023.101234. Epub 2024 Jan 2.
6
Biomechanics and mechanobiology of the bone matrix.骨基质的生物力学与机械生物学
Bone Res. 2022 Aug 30;10(1):59. doi: 10.1038/s41413-022-00223-y.
9
Engineering fiber anisotropy within natural collagen hydrogels.工程纤维各向异性于天然胶原水凝胶内。
Am J Physiol Cell Physiol. 2021 Jun 1;320(6):C1112-C1124. doi: 10.1152/ajpcell.00036.2021. Epub 2021 Apr 14.

本文引用的文献

1
Dynamic shear-influenced collagen self-assembly.动态剪切影响的胶原蛋白自组装
Biomaterials. 2009 Dec;30(34):6581-92. doi: 10.1016/j.biomaterials.2009.07.070. Epub 2009 Sep 17.
2
Prelude to corneal tissue engineering - gaining control of collagen organization.角膜组织工程学的前奏——掌控胶原蛋白的排列
Prog Retin Eye Res. 2008 Sep;27(5):549-77. doi: 10.1016/j.preteyeres.2008.08.001. Epub 2008 Aug 19.
4
Aligned fibrillar collagen matrices obtained by shear flow deposition.通过剪切流沉积获得的排列的纤维状胶原基质。
Biomaterials. 2008 Oct;29(28):3888-95. doi: 10.1016/j.biomaterials.2008.06.016. Epub 2008 Jul 7.
7
Engineering thick tissues--the vascularisation problem.构建厚组织——血管化问题
Eur Cell Mater. 2007 Jul 25;14:1-18; discussion 18-9. doi: 10.22203/ecm.v014a01.
10
Flow and magnetic field induced collagen alignment.流动和磁场诱导的胶原蛋白排列。
Biomaterials. 2007 Feb;28(6):1105-14. doi: 10.1016/j.biomaterials.2006.10.010. Epub 2006 Nov 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验