Suppr超能文献

钙离子通过静电相互作用诱导质膜中膜蛋白的聚集。

Ca2+ induces clustering of membrane proteins in the plasma membrane via electrostatic interactions.

机构信息

Department of Neurobiology, Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany.

出版信息

EMBO J. 2011 Apr 6;30(7):1209-20. doi: 10.1038/emboj.2011.53. Epub 2011 Mar 1.

Abstract

Membrane proteins and membrane lipids are frequently organized in submicron-sized domains within cellular membranes. Factors thought to be responsible for domain formation include lipid-lipid interactions, lipid-protein interactions and protein-protein interactions. However, it is unclear whether the domain structure is regulated by other factors such as divalent cations. Here, we have examined in native plasma membranes and intact cells the role of the second messenger Ca(2+) in membrane protein organization. We find that Ca(2+) at low micromolar concentrations directly redistributes a structurally diverse array of membrane proteins via electrostatic effects. Redistribution results in a more clustered pattern, can be rapid and triggered by Ca(2+) influx through voltage-gated calcium channels and is reversible. In summary, the data demonstrate that the second messenger Ca(2+) strongly influences the organization of membrane proteins, thus adding a novel and unexpected factor that may control the domain structure of biological membranes.

摘要

膜蛋白和膜脂经常在细胞内的亚微米大小的区域内组织。被认为负责形成域的因素包括脂质-脂质相互作用、脂质-蛋白质相互作用和蛋白质-蛋白质相互作用。然而,目前尚不清楚域结构是否受其他因素(如二价阳离子)的调节。在这里,我们在天然质膜和完整细胞中研究了第二信使 Ca(2+) 在膜蛋白组织中的作用。我们发现,低微摩尔浓度的 Ca(2+) 通过静电作用直接重新分布结构多样的一系列膜蛋白。再分配导致更聚类的模式,可以快速发生,并通过电压门控钙通道的 Ca(2+) 内流触发,并且是可逆的。总之,数据表明第二信使 Ca(2+) 强烈影响膜蛋白的组织,从而增加了一个新的和意外的因素,可能控制生物膜的域结构。

相似文献

3
Divalent cation and lipid-protein interactions of biomembranes.
Biosci Rep. 1993 Jun;13(3):143-57. doi: 10.1007/BF01149959.
4
Electrostatic control of the membrane targeting of C2 domains.C2结构域膜靶向的静电控制
Mol Cell. 2002 Jan;9(1):145-54. doi: 10.1016/s1097-2765(01)00426-9.
9
Ca2+ signaling and STIM1.钙离子信号转导和 STIM1。
Prog Biophys Mol Biol. 2010 Sep;103(1):51-8. doi: 10.1016/j.pbiomolbio.2010.02.004. Epub 2010 Mar 11.

引用本文的文献

8
HPV caught in the tetraspanin web?HPV 被困在四跨膜蛋白网络中?
Med Microbiol Immunol. 2020 Aug;209(4):447-459. doi: 10.1007/s00430-020-00683-1. Epub 2020 Jun 13.

本文引用的文献

2
t-SNARE protein conformations patterned by the lipid microenvironment.t-SNARE 蛋白构象受脂质微环境影响。
J Biol Chem. 2010 Apr 30;285(18):13535-41. doi: 10.1074/jbc.M109.091058. Epub 2010 Jan 21.
3
Lipid rafts as a membrane-organizing principle.脂筏作为一种膜组织原则。
Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621.
4
Structure and dynamics of a two-helix SNARE complex in live cells.活细胞中两个螺旋 SNARE 复合物的结构与动态。
Traffic. 2010 Mar;11(3):394-404. doi: 10.1111/j.1600-0854.2009.01020.x. Epub 2009 Nov 19.
5
The challenge of lipid rafts.脂筏的挑战。
J Lipid Res. 2009 Apr;50 Suppl(Suppl):S323-8. doi: 10.1194/jlr.R800040-JLR200. Epub 2008 Oct 27.
6
Protein area occupancy at the center of the red blood cell membrane.红细胞膜中心的蛋白质面积占有率。
Proc Natl Acad Sci U S A. 2008 Feb 26;105(8):2848-52. doi: 10.1073/pnas.0712379105. Epub 2008 Feb 19.
7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验