Ravula Thirupathi, Dai Xiaofeng, Ramamoorthy Ayyalusamy
Biophysics Program and Department of Chemistry, Biomedical Engineering, and Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, Michigan 48109-1055, United States.
Langmuir. 2021 Jun 29;37(25):7780-7788. doi: 10.1021/acs.langmuir.1c01018. Epub 2021 Jun 15.
Divalent cations, especially Ca and Mg, play a vital role in the function of biomolecules and making them important to be constituents in samples for in vitro biophysical and biochemical characterizations. Although lipid nanodiscs are becoming valuable tools for structural biology studies on membrane proteins and for drug delivery, most types of nanodiscs used in these studies are unstable in the presence of divalent metal ions. To avoid the interaction of divalent metal ions with the belt of the nanodiscs, synthetic polymers have been designed and demonstrated to form stable lipid nanodiscs under such unstable conditions. Such polymer-based nanodiscs have been shown to provide an ideal platform for structural studies using both solid-state and solution NMR spectroscopies because of the near-native cell-membrane environment they provide and the unique magnetic-alignment behavior of large-size nanodiscs. In this study, we report an investigation probing the effects of Ca and Mg ions on the formation of polymer-based lipid nanodiscs and the magnetic-alignment properties using a synthetic polymer, styrene maleimide quaternary ammonium (SMA-QA), and 1,2-dimyristoyl--glycero-3-phosphocholine (DMPC) lipids. Phosphorus-31 NMR experiments were used to evaluate the stability of the magnetic-alignment behavior of the nanodiscs for varying concentrations of Ca or Mg at different temperatures. It is remarkable that the interaction of divalent cations with lipid headgroups promotes the stacking up of nanodiscs that results in the enhanced magnetic alignment of nanodiscs. Interestingly, the reported results show that both the temperature and the concentration of divalent metal ions can be optimized to achieve the optimal alignment of nanodiscs in the presence of an applied magnetic field. We expect the reported results to be useful in the design of nanodisc-based nanoparticles for various applications in addition to atomic-resolution structural and dynamics studies using NMR and other biophysical techniques.
二价阳离子,尤其是钙和镁,在生物分子的功能中起着至关重要的作用,使其成为体外生物物理和生化表征样品中的重要成分。尽管脂质纳米盘正成为用于膜蛋白结构生物学研究和药物递送的有价值工具,但这些研究中使用的大多数类型的纳米盘在二价金属离子存在下不稳定。为了避免二价金属离子与纳米盘的带相互作用,已设计并证明合成聚合物可在这种不稳定条件下形成稳定的脂质纳米盘。由于基于聚合物的纳米盘提供了接近天然细胞膜的环境以及大尺寸纳米盘独特的磁取向行为,已显示其为使用固态和溶液核磁共振光谱进行结构研究提供了理想平台。在本研究中,我们报告了一项研究,该研究使用合成聚合物苯乙烯马来酰亚胺季铵盐(SMA-QA)和1,2-二肉豆蔻酰-sn-甘油-3-磷酸胆碱(DMPC)脂质,探究钙和镁离子对基于聚合物的脂质纳米盘形成及磁取向性质的影响。使用磷-31核磁共振实验来评估在不同温度下不同浓度的钙或镁时纳米盘磁取向行为的稳定性。值得注意的是,二价阳离子与脂质头部基团的相互作用促进了纳米盘的堆叠,从而导致纳米盘磁取向增强。有趣的是,报告结果表明,在施加磁场的情况下,可以优化温度和二价金属离子的浓度以实现纳米盘的最佳取向。我们期望报告的结果除了在使用核磁共振和其他生物物理技术进行原子分辨率结构和动力学研究之外,还将有助于设计用于各种应用的基于纳米盘的纳米颗粒。